{"title":"Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction","authors":"Tengfei Ma;Yujie Chen;Wen Tao;Dashun Zheng;Xuan Lin;Patrick Cheong-Iao Pang;Yiping Liu;Yijun Wang;Longyue Wang;Bosheng Song;Xiangxiang Zeng;Philip S. Yu","doi":"10.1109/TKDE.2024.3471508","DOIUrl":null,"url":null,"abstract":"Molecular interaction prediction plays a crucial role in forecasting unknown interactions between molecules, such as drug-target interaction (DTI) and drug-drug interaction (DDI), which are essential in the field of drug discovery and therapeutics. Although previous prediction methods have yielded promising results by leveraging the rich semantics and topological structure of biomedical knowledge graphs (KGs), they have primarily focused on enhancing predictive performance without addressing the presence of inevitable noise and inconsistent semantics. This limitation has hindered the advancement of KG-based prediction methods. To address this limitation, we propose BioKDN (\n<bold>Bio</b>\nmedical \n<bold>K</b>\nnowledge Graph \n<bold>D</b>\nenoising \n<bold>N</b>\network) for robust molecular interaction prediction. BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner, providing a general module for extracting task-relevant interactions. To enhance the reliability of the refined structure, BioKDN maintains consistent and robust semantics by smoothing relations around the target interaction. By maximizing the mutual information between reliable structure and smoothed relations, BioKDN emphasizes informative semantics to enable precise predictions. Experimental results on real-world datasets show that BioKDN surpasses state-of-the-art models in DTI and DDI prediction tasks, confirming the effectiveness and robustness of BioKDN in denoising unreliable interactions within contaminated KGs.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8682-8694"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10706014/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular interaction prediction plays a crucial role in forecasting unknown interactions between molecules, such as drug-target interaction (DTI) and drug-drug interaction (DDI), which are essential in the field of drug discovery and therapeutics. Although previous prediction methods have yielded promising results by leveraging the rich semantics and topological structure of biomedical knowledge graphs (KGs), they have primarily focused on enhancing predictive performance without addressing the presence of inevitable noise and inconsistent semantics. This limitation has hindered the advancement of KG-based prediction methods. To address this limitation, we propose BioKDN (
Bio
medical
K
nowledge Graph
D
enoising
N
etwork) for robust molecular interaction prediction. BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner, providing a general module for extracting task-relevant interactions. To enhance the reliability of the refined structure, BioKDN maintains consistent and robust semantics by smoothing relations around the target interaction. By maximizing the mutual information between reliable structure and smoothed relations, BioKDN emphasizes informative semantics to enable precise predictions. Experimental results on real-world datasets show that BioKDN surpasses state-of-the-art models in DTI and DDI prediction tasks, confirming the effectiveness and robustness of BioKDN in denoising unreliable interactions within contaminated KGs.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.