Javier Chagoya, I. Díaz-Saldaña, J. C. López-Domínguez, C. Martínez-Robles
{"title":"On the entropy of a stealth vector-tensor black hole","authors":"Javier Chagoya, I. Díaz-Saldaña, J. C. López-Domínguez, C. Martínez-Robles","doi":"10.1140/epjc/s10052-024-13536-5","DOIUrl":null,"url":null,"abstract":"<div><p>We apply Wald’s formalism to a Lagrangian within generalised Proca gravity that admits a Schwarzschild black hole with a non-trivial vector field. The resulting entropy differs from that of the same black hole in General Relativity by a logarithmic correction modulated by the only independent charge of the vector field. We find conditions on this charge to guarantee that the entropy is a non-decreasing function of the black hole area, as is the case in GR. If this requirement is extended to black hole mergers, we find that for Planck scale black holes, a non-decreasing entropy is possible only if the area of the final black hole is several times larger than the initial total area of the merger. Finally, we discuss some implications of the vector Galileon entropy from the point of view of entropic gravity.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13536-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13536-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
We apply Wald’s formalism to a Lagrangian within generalised Proca gravity that admits a Schwarzschild black hole with a non-trivial vector field. The resulting entropy differs from that of the same black hole in General Relativity by a logarithmic correction modulated by the only independent charge of the vector field. We find conditions on this charge to guarantee that the entropy is a non-decreasing function of the black hole area, as is the case in GR. If this requirement is extended to black hole mergers, we find that for Planck scale black holes, a non-decreasing entropy is possible only if the area of the final black hole is several times larger than the initial total area of the merger. Finally, we discuss some implications of the vector Galileon entropy from the point of view of entropic gravity.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.