Yasmeen A S Hameed, Nada Alkhathami, Razan M Snari, Alaa M Munshi, Omaymah Alaysuy, Muhammad Hadi, Marwah A Alsharif, M A Khalil, Nashwa M El-Metwaly
{"title":"Novel amino-functionalized MOF-based sensor for zinc ion detection in water and blood serum samples.","authors":"Yasmeen A S Hameed, Nada Alkhathami, Razan M Snari, Alaa M Munshi, Omaymah Alaysuy, Muhammad Hadi, Marwah A Alsharif, M A Khalil, Nashwa M El-Metwaly","doi":"10.1016/j.saa.2024.125432","DOIUrl":null,"url":null,"abstract":"<p><p>Aquatic systems with low zinc levels can experience a significant decrease in carbon dioxide uptake and limited growth of phytoplankton species. In this study, we describe the use of a new fluorescent sensor based on NH<sub>2</sub>-MIL-53(Al), and modified with glutaraldehyde and sulfadoxine, for selectively detecting zinc ions in water and blood serum samples. Characterization of the synthesized material was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming successful functionalization and preservation of the MOF structure. The sensor's performance for Zn<sup>2+</sup> detection was evaluated by spectrofluorometry, demonstrating a significant fluorescence enhancement upon Zn<sup>2+</sup> binding due to the interaction between Zn<sup>2+</sup> ions and the sulfonamide groups. With a detection limit as low as 3.14 × 10<sup>-2</sup> ppm, the sensor demonstrates high selectivity for Zn<sup>2+</sup> over other common metal ions. The sensor's response is rapid, stable, and reproducible, making it suitable for practical applications. Real sample analysis was conducted in tap water and blood serum samples, with the results compared to those obtained using ICP-OES and a colorimetric test with 5-bromo-PAPS. The comparison confirmed the high accuracy and reliability of the fluorescent sensor in detecting Zn<sup>2+</sup> ions in complex matrices. NH<sub>2</sub>-MIL-53(Al) modified with glutaraldehyde and sulfadoxine shows potential as a selective fluorescent sensor for Zn<sup>2+</sup> detection, making it a valuable tool for monitoring the environment and biology.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"327 ","pages":"125432"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aquatic systems with low zinc levels can experience a significant decrease in carbon dioxide uptake and limited growth of phytoplankton species. In this study, we describe the use of a new fluorescent sensor based on NH2-MIL-53(Al), and modified with glutaraldehyde and sulfadoxine, for selectively detecting zinc ions in water and blood serum samples. Characterization of the synthesized material was performed using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming successful functionalization and preservation of the MOF structure. The sensor's performance for Zn2+ detection was evaluated by spectrofluorometry, demonstrating a significant fluorescence enhancement upon Zn2+ binding due to the interaction between Zn2+ ions and the sulfonamide groups. With a detection limit as low as 3.14 × 10-2 ppm, the sensor demonstrates high selectivity for Zn2+ over other common metal ions. The sensor's response is rapid, stable, and reproducible, making it suitable for practical applications. Real sample analysis was conducted in tap water and blood serum samples, with the results compared to those obtained using ICP-OES and a colorimetric test with 5-bromo-PAPS. The comparison confirmed the high accuracy and reliability of the fluorescent sensor in detecting Zn2+ ions in complex matrices. NH2-MIL-53(Al) modified with glutaraldehyde and sulfadoxine shows potential as a selective fluorescent sensor for Zn2+ detection, making it a valuable tool for monitoring the environment and biology.