Zahra Mazidi, Matthias Wieser, Nicoleta Spinu, Adelheid Weidinger, Andrey V Kozlov, Kristijan Vukovic, Sara Wellens, Cormac Murphy, Pranika Singh, Liadys Mora Lagares, Madhusudhan Reddy Bobbili, Lisa Liendl, Markus Schosserer, Andreas Diendorfer, Dieter Bettelheim, Wolf Eilenberg, Thomas Exner, Maxime Culot, Paul Jennings, Anja Wilmes, Marjana Novic, Emilio Benfenati, Regina Grillari-Voglauer, Johannes Grillari
{"title":"Cyclosporin A toxicity on endothelial cells differentiated from induced pluripotent stem cells: Assembling an adverse outcome pathway.","authors":"Zahra Mazidi, Matthias Wieser, Nicoleta Spinu, Adelheid Weidinger, Andrey V Kozlov, Kristijan Vukovic, Sara Wellens, Cormac Murphy, Pranika Singh, Liadys Mora Lagares, Madhusudhan Reddy Bobbili, Lisa Liendl, Markus Schosserer, Andreas Diendorfer, Dieter Bettelheim, Wolf Eilenberg, Thomas Exner, Maxime Culot, Paul Jennings, Anja Wilmes, Marjana Novic, Emilio Benfenati, Regina Grillari-Voglauer, Johannes Grillari","doi":"10.1016/j.tiv.2024.105954","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically in regard to vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet. Therefore, we designed this study to get deeper insights into the mechanistic toxicology of CSA on angiogenesis. Stem cells, especially induced pluripotent stem cells (iPSCs) with the ability of differentiation to all organs of the body, are considered a promising in vitro model to reduce animal experimentation. In this study, we differentiated iPSCs to endothelial cells (ECs) as one cell type that in other studies would allow to generate cells or organoids from single donors. Flow cytometry and immunostaining confirmed our scalable differentiation protocol. Then dose and time course experiments assessing CSA cytotoxicity on iPS derived endothelial cells were performed. Transcriptomic data suggested CDA dependent induction of reactive oxygen species (ROS) and mitochondrial dysfunction, which was confirmed by in vitro experiments. Additionally, CSA impaired angiogenesis via ROS induction. Finally, we combined this information into an AOP, was developed based on here observed and literature based evidence for CSA-mediated endothelial cell toxicity. This AOP will help to design in vitro test batteries, model events observed in human toxicity studies, as well for predictive toxicology.</p>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":" ","pages":"105954"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tiv.2024.105954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically in regard to vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet. Therefore, we designed this study to get deeper insights into the mechanistic toxicology of CSA on angiogenesis. Stem cells, especially induced pluripotent stem cells (iPSCs) with the ability of differentiation to all organs of the body, are considered a promising in vitro model to reduce animal experimentation. In this study, we differentiated iPSCs to endothelial cells (ECs) as one cell type that in other studies would allow to generate cells or organoids from single donors. Flow cytometry and immunostaining confirmed our scalable differentiation protocol. Then dose and time course experiments assessing CSA cytotoxicity on iPS derived endothelial cells were performed. Transcriptomic data suggested CDA dependent induction of reactive oxygen species (ROS) and mitochondrial dysfunction, which was confirmed by in vitro experiments. Additionally, CSA impaired angiogenesis via ROS induction. Finally, we combined this information into an AOP, was developed based on here observed and literature based evidence for CSA-mediated endothelial cell toxicity. This AOP will help to design in vitro test batteries, model events observed in human toxicity studies, as well for predictive toxicology.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.