Rujun Chen, Yue Hou, Jina Chen, Fuyun Dong, Xiaoqin Wang, Junhua Guan, Liwen Zhang, He Fei, Lina Yang
{"title":"PLAC1 augments the malignant phenotype of cervical cancer through the mTOR/HIF-1α/Snail signaling pathway.","authors":"Rujun Chen, Yue Hou, Jina Chen, Fuyun Dong, Xiaoqin Wang, Junhua Guan, Liwen Zhang, He Fei, Lina Yang","doi":"10.1016/j.lfs.2024.123242","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study investigated the molecular mechanisms of placenta-specific protein 1 (PLAC1) in cervical cancer (CCa), aiming to elucidate its role in tumorigenesis through in vitro and in vivo experiments.</p><p><strong>Materials and methods: </strong>CCa cell lines with overexpressed or silenced PLAC1 were established to evaluate its impact on cell cycle, apoptosis and the expression of key proteins in the PLAC1/mTOR/HIF-1α/Snail signaling pathways. Functional assays were conducted to assess the influence of the PLAC1/mTOR/HIF-1α/Snail regulatory pathway on cell proliferation, migration and invasion. The role of the mTOR signaling pathway in PLAC1-mediated modulation of CCa characteristics was validated using mTOR activator MHY1485 and mTOR inhibitor rapamycin respectively. HIF1A siRNA was introduced to confirm the role of HIF1A. Furthermore, an in vivo nude mouse model was constructed to confirm PLAC1's influence on tumorigenesis and metastasis in CCa.</p><p><strong>Key findings: </strong>PLAC1 promoted proliferation, migration, and invasion via the mTOR/HIF-1α/Snail pathway in CCa cells. Enrichment analysis of PLAC1-associated differentially expressed genes further implicated their involvement in CCa and tumor promotion. In a xenograft mouse model, PLAC1 exhibited a pro-tumorigenic effect, which can be reversed by siRNA targeting HIF1A.</p><p><strong>Significance: </strong>This study enhances our understanding of PLAC1's role and molecular mechanisms in CCa progression, highlighting its potential as a diagnostic, prognostic, and therapeutic marker for the management of CCa.</p>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":" ","pages":"123242"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.lfs.2024.123242","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study investigated the molecular mechanisms of placenta-specific protein 1 (PLAC1) in cervical cancer (CCa), aiming to elucidate its role in tumorigenesis through in vitro and in vivo experiments.
Materials and methods: CCa cell lines with overexpressed or silenced PLAC1 were established to evaluate its impact on cell cycle, apoptosis and the expression of key proteins in the PLAC1/mTOR/HIF-1α/Snail signaling pathways. Functional assays were conducted to assess the influence of the PLAC1/mTOR/HIF-1α/Snail regulatory pathway on cell proliferation, migration and invasion. The role of the mTOR signaling pathway in PLAC1-mediated modulation of CCa characteristics was validated using mTOR activator MHY1485 and mTOR inhibitor rapamycin respectively. HIF1A siRNA was introduced to confirm the role of HIF1A. Furthermore, an in vivo nude mouse model was constructed to confirm PLAC1's influence on tumorigenesis and metastasis in CCa.
Key findings: PLAC1 promoted proliferation, migration, and invasion via the mTOR/HIF-1α/Snail pathway in CCa cells. Enrichment analysis of PLAC1-associated differentially expressed genes further implicated their involvement in CCa and tumor promotion. In a xenograft mouse model, PLAC1 exhibited a pro-tumorigenic effect, which can be reversed by siRNA targeting HIF1A.
Significance: This study enhances our understanding of PLAC1's role and molecular mechanisms in CCa progression, highlighting its potential as a diagnostic, prognostic, and therapeutic marker for the management of CCa.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.