AIGen: an artificial intelligence software for complex genetic data analysis.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu
{"title":"AIGen: an artificial intelligence software for complex genetic data analysis.","authors":"Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu","doi":"10.1093/bib/bbae566","DOIUrl":null,"url":null,"abstract":"<p><p>The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae566","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.

AIGen:用于复杂遗传数据分析的人工智能软件。
近年来,人工智能(AI)技术的发展,尤其是深度神经网络(DNN)技术的进步,给许多领域带来了革命性的变化。虽然 DNN 在现代人工智能技术中发挥着核心作用,但由于高维遗传数据和日益增多的样本带来的分析和计算挑战,它很少被用于遗传数据分析。为了促进人工智能在遗传数据分析中的应用,我们开发了一个 C++ 软件包 AIGen,它基于两种新开发的神经网络(即核神经网络和功能神经网络),能够模拟复杂的基因型-表型关系(如相互作用),同时在处理高维遗传数据时具有强大的性能。此外,该软件包还采用了计算效率高的算法(如最小规范二次无偏估计方法和批量训练)来加速计算,使其在分析具有数千甚至数百万样本的大规模数据集时具有很高的计算效率。通过将 AIGen 应用于英国生物库数据集,我们证明了它可以高效地分析大规模遗传数据、提高准确性并保持稳健的性能。可用性AIGen 采用 C++ 开发,其源代码和参考库可在 GitHub 上公开访问,网址为 https://github.com/TingtHou/AIGen。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信