Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu
{"title":"AIGen: an artificial intelligence software for complex genetic data analysis.","authors":"Tingting Hou, Xiaoxi Shen, Shan Zhang, Muxuan Liang, Li Chen, Qing Lu","doi":"10.1093/bib/bbae566","DOIUrl":null,"url":null,"abstract":"<p><p>The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae566","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has rarely been used in genetic data analysis due to analytical and computational challenges brought by high-dimensional genetic data and an increasing number of samples. To facilitate the use of AI in genetic data analysis, we developed a C++ package, AIGen, based on two newly developed neural networks (i.e. kernel neural networks and functional neural networks) that are capable of modeling complex genotype-phenotype relationships (e.g. interactions) while providing robust performance against high-dimensional genetic data. Moreover, computationally efficient algorithms (e.g. a minimum norm quadratic unbiased estimation approach and batch training) are implemented in the package to accelerate the computation, making them computationally efficient for analyzing large-scale datasets with thousands or even millions of samples. By applying AIGen to the UK Biobank dataset, we demonstrate that it can efficiently analyze large-scale genetic data, attain improved accuracy, and maintain robust performance. Availability: AIGen is developed in C++ and its source code, along with reference libraries, is publicly accessible on GitHub at https://github.com/TingtHou/AIGen.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.