Broad-spectrum inflammasome inhibition by thiomuscimol.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Marisa J Anderson, Andreas B den Hartigh, Wendy P Loomis, Susan L Fink
{"title":"Broad-spectrum inflammasome inhibition by thiomuscimol.","authors":"Marisa J Anderson, Andreas B den Hartigh, Wendy P Loomis, Susan L Fink","doi":"10.1038/s41420-024-02238-2","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammasome formation, arising from pathogen or internal activating signals, is a key step in canonical pyroptosis, a gasdermin-mediated inflammatory cell death. Inhibition of pyroptosis has great clinical relevance due to its involvement in many different disease states. Current inhibitors of pyroptosis either only inhibit the final lytic step, which still allows inflammatory signal release, or only inhibit a single inflammasome, which does not account for inherent redundancy in activation of other inflammatory pathways. Here, we show that thiomuscimol, a structural analog of the lysis inhibitor muscimol, exhibits unique inhibitory activity upstream of plasma membrane rupture. We find that thiomuscimol inhibits inflammasome formation, as well as downstream caspase-1 activation, initiated by multiple pyroptotic signals, regardless of whether NLR recruitment of caspase-1 to the inflammasome relies on the ASC adapter protein. The ability of thiomuscimol to block multiple different inflammasomes opens the door for development of therapeutics with increased applications to broadly inhibit pyroptosis in multiple pathological settings.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"470"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02238-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammasome formation, arising from pathogen or internal activating signals, is a key step in canonical pyroptosis, a gasdermin-mediated inflammatory cell death. Inhibition of pyroptosis has great clinical relevance due to its involvement in many different disease states. Current inhibitors of pyroptosis either only inhibit the final lytic step, which still allows inflammatory signal release, or only inhibit a single inflammasome, which does not account for inherent redundancy in activation of other inflammatory pathways. Here, we show that thiomuscimol, a structural analog of the lysis inhibitor muscimol, exhibits unique inhibitory activity upstream of plasma membrane rupture. We find that thiomuscimol inhibits inflammasome formation, as well as downstream caspase-1 activation, initiated by multiple pyroptotic signals, regardless of whether NLR recruitment of caspase-1 to the inflammasome relies on the ASC adapter protein. The ability of thiomuscimol to block multiple different inflammasomes opens the door for development of therapeutics with increased applications to broadly inhibit pyroptosis in multiple pathological settings.

硫代麝香草酚的广谱炎症小体抑制作用
炎症小体的形成源于病原体或内部激活信号,是典型热蛋白沉积(一种由气体蛋白介导的炎症细胞死亡)的关键步骤。由于热蛋白沉积参与了许多不同的疾病状态,因此抑制热蛋白沉积具有重要的临床意义。目前的热凋亡抑制剂要么只抑制最后的裂解步骤,仍允许炎症信号的释放,要么只抑制单一的炎性体,无法解释激活其他炎症通路的内在冗余。在这里,我们发现硫代麝香草酚是裂解抑制剂麝香草酚的结构类似物,它在质膜破裂上游表现出独特的抑制活性。我们发现,无论 NLR 将 caspase-1 招募到炎性体是否依赖于 ASC 适配器蛋白,硫代麝香草酚都能抑制炎性体的形成以及下游 caspase-1 的活化。硫代麝香草酚能够阻断多种不同的炎性体,这为开发更多应用于多种病理情况下广泛抑制热蛋白沉积的治疗药物打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信