What is the Relationship Between Time in Range, Time in Tight Range, and HbA1c in Youth and Young Adults With Type 1 Diabetes? Results From the German/Austrian/Luxembourgian/Swiss Diabetes Prospective Follow-Up Registry.
Marie-Anne Burckhardt, Marie Auzanneau, Joachim Rosenbauer, Elisabeth Binder, Jantje Weiskorn, Melanie Hess, Christof Klinkert, Joaquina Mirza, Lara-Sophie Zehnder, Sandra Wenzel, Kerstin Placzek, Reinhard W Holl
{"title":"What is the Relationship Between Time in Range, Time in Tight Range, and HbA1c in Youth and Young Adults With Type 1 Diabetes? Results From the German/Austrian/Luxembourgian/Swiss Diabetes Prospective Follow-Up Registry.","authors":"Marie-Anne Burckhardt, Marie Auzanneau, Joachim Rosenbauer, Elisabeth Binder, Jantje Weiskorn, Melanie Hess, Christof Klinkert, Joaquina Mirza, Lara-Sophie Zehnder, Sandra Wenzel, Kerstin Placzek, Reinhard W Holl","doi":"10.1177/19322968241288870","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Time in range (TIR, 70-180 mg/dL) is an established marker of glycemic control. More recently, time in tight range (TTR, 70-140 mg/dL) has been proposed as well. The aim of this study was to examine the relationship between TIR, TTR, and HbA1c in youth and young adults with type 1 diabetes (T1D) in the German/Austrian/Luxembourgian/Swiss Diabetes Prospective Follow-up (DPV) registry.</p><p><strong>Methods: </strong>Data of youth and young adults aged ≤25 years with T1D for >3 months, documented in the DPV registry between 2019 and 2022 were analyzed. The most recent available HbA1c and corresponding continuous glucose monitoring (CGM) profiles in the 12 preceding weeks with at least 80% completeness were included. Associations were investigated using correlation and adjusted regression models.</p><p><strong>Results: </strong>1901 individuals (median age 14.0 years [IQR 10.4-16.9]) were included in the analysis. TIR and TTR correlated strongly, r = 0.965 (95% CI [0.962, 0.968]), <i>P</i> < .001. TTR estimates predicted from TIR were significantly higher in the group with high coefficient of variation (CV group ≥ 36%), <i>P</i> < .001. Correlations between TIR or TTR and HbA1c were both strong, r = -0.764 (95% CI [-0.782, -0.745]) and r = -0.777 (95% CI [-0.795, -0.759]), both <i>P</i> < .001, with no significant difference (<i>P</i> = .312) However, adjusted regression models indicated a slightly better fit for the prediction of HbA1c from TIR compared with TTR.</p><p><strong>Conclusions: </strong>Based on large, real-world data from a multinational registry, TIR and TTR correlated strongly, and both showed a good prediction of HbA1c. TTR estimates predicted from TIR were significantly higher in people with high glucose variability (CV).</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241288870"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571145/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241288870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Time in range (TIR, 70-180 mg/dL) is an established marker of glycemic control. More recently, time in tight range (TTR, 70-140 mg/dL) has been proposed as well. The aim of this study was to examine the relationship between TIR, TTR, and HbA1c in youth and young adults with type 1 diabetes (T1D) in the German/Austrian/Luxembourgian/Swiss Diabetes Prospective Follow-up (DPV) registry.
Methods: Data of youth and young adults aged ≤25 years with T1D for >3 months, documented in the DPV registry between 2019 and 2022 were analyzed. The most recent available HbA1c and corresponding continuous glucose monitoring (CGM) profiles in the 12 preceding weeks with at least 80% completeness were included. Associations were investigated using correlation and adjusted regression models.
Results: 1901 individuals (median age 14.0 years [IQR 10.4-16.9]) were included in the analysis. TIR and TTR correlated strongly, r = 0.965 (95% CI [0.962, 0.968]), P < .001. TTR estimates predicted from TIR were significantly higher in the group with high coefficient of variation (CV group ≥ 36%), P < .001. Correlations between TIR or TTR and HbA1c were both strong, r = -0.764 (95% CI [-0.782, -0.745]) and r = -0.777 (95% CI [-0.795, -0.759]), both P < .001, with no significant difference (P = .312) However, adjusted regression models indicated a slightly better fit for the prediction of HbA1c from TIR compared with TTR.
Conclusions: Based on large, real-world data from a multinational registry, TIR and TTR correlated strongly, and both showed a good prediction of HbA1c. TTR estimates predicted from TIR were significantly higher in people with high glucose variability (CV).
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.