{"title":"Constructing core–shell phosphorus doped MnCo2O4.5@ZIS for efficient photocatalytic hydrogen production from water splitting","authors":"Yueru Yan, Yuanyuan Zhao, Yun Lou, Yafei Zhao, Huishan Shang, Yinze Yang, Dan Wang, Bing Zhang","doi":"10.1016/j.jcis.2024.11.052","DOIUrl":null,"url":null,"abstract":"<div><div>Rational construction of core@shell heterostructured photocatalysts is the key to realize efficient hydrogen production from water splitting attributing to the accelerated photoinduced charges separation/transfer and enhanced light absorption ability. In this work, two-dimensional (2D) ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) nanosheets were in-situ grown on phosphorus doped MnCo<sub>2</sub>O<sub>4.5</sub> (P-MnCo<sub>2</sub>O<sub>4.5</sub>) nanospheres to construct P-MnCo<sub>2</sub>O<sub>4.5</sub>@ZIS heterostructured photocatalysts for efficient photocatalytic hydrogen production. The optimized 6 wt% P-MnCo<sub>2</sub>O<sub>4.5</sub>@ZIS composite presents remarkable photocatalytic hydrogen evolution rate of 4197 µmol g<sup>−1</sup> h<sup>−1</sup> (8 times of single ZIS) along with excellent cycling stability, which is comparable to most previous reported ZnIn<sub>2</sub>S<sub>4</sub>-based or even noble-metal involved catalysts. The improved photocatalytic performance is resulted from the distinguished heterostructure and components of P-MnCo<sub>2</sub>O<sub>4.5</sub>@ZIS, in which the close contact interface facilitates the separation/transfer and inhibits the recombination of charges, and the uniform distribution of ZIS nanosheets on P-MnCo<sub>2</sub>O<sub>4.5</sub> increases the active sites and fortifies the light absorption. The present work comes up with a prospective method for establishing core@shell ZIS-based heterostructured photocatalysts for efficient hydrogen generation.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 965-975"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724026213","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rational construction of core@shell heterostructured photocatalysts is the key to realize efficient hydrogen production from water splitting attributing to the accelerated photoinduced charges separation/transfer and enhanced light absorption ability. In this work, two-dimensional (2D) ZnIn2S4 (ZIS) nanosheets were in-situ grown on phosphorus doped MnCo2O4.5 (P-MnCo2O4.5) nanospheres to construct P-MnCo2O4.5@ZIS heterostructured photocatalysts for efficient photocatalytic hydrogen production. The optimized 6 wt% P-MnCo2O4.5@ZIS composite presents remarkable photocatalytic hydrogen evolution rate of 4197 µmol g−1 h−1 (8 times of single ZIS) along with excellent cycling stability, which is comparable to most previous reported ZnIn2S4-based or even noble-metal involved catalysts. The improved photocatalytic performance is resulted from the distinguished heterostructure and components of P-MnCo2O4.5@ZIS, in which the close contact interface facilitates the separation/transfer and inhibits the recombination of charges, and the uniform distribution of ZIS nanosheets on P-MnCo2O4.5 increases the active sites and fortifies the light absorption. The present work comes up with a prospective method for establishing core@shell ZIS-based heterostructured photocatalysts for efficient hydrogen generation.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies