{"title":"Blood metabolomic profile in patients with type 2 diabetes mellitus with diabetic peripheral neuropathic pain.","authors":"Hung-Chou Kuo, Chia-Ni Lin, Sung-Sheng Tsai, Chiung-Mei Chen, Rong-Kuo Lyu, Chun-Che Chu, Long-Sun Ro, Ming-Feng Liao, Hong-Shiu Chang, Yi-Ching Weng, Jawl-Shan Hwang","doi":"10.1111/jdi.14355","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to identify metabolic markers for diabetic peripheral neuropathic pain (DPNP) in patients with type 2 diabetes mellitus (T2DM).</p><p><strong>Materials and methods: </strong>Blood metabolite levels in the amino acid, biogenic amine, sphingomyelin, phosphatidylcholine (PC), carnitines, and hexose classes were analyzed in nondiabetic control (n = 27), T2DM without DPNP (n = 58), and T2DM with DPNP (n = 29) using liquid chromatography tandem mass spectrometry. Variable importance projection (VIP) evaluation by partial least squares discriminant analysis was performed on clinical parameters and metabolites.</p><p><strong>Results: </strong>Sixteen variables with VIP > 1.0 (P < 0.05) were identified across all patient groups, and 5 variables were identified to discriminate between the two T2DM groups. DPNP patients showed elevated fasting blood glucose, glutamate, PC aa C36:1, lysoPC a C18:1, and lysoPC a C18:2, while low-density lipoprotein cholesterol, phenylalanine, and tryptophan were reduced. Glutamate, lysoPC a C18:1, and lysoPC a C18:2 discriminated T2DM with DPNP from those without DPNP with an AUC of 0.671. The AUC was improved to 0.765 when ratios of metabolite pairs were considered.</p><p><strong>Interpretation: </strong>Blood metabolites include glutamate, and phospholipid-related metabolites implicated in neuropathic pain may have the potential as biomarkers for DPNP. Further investigation is required to understand the mechanism of action of these altered metabolites in DPNP.</p>","PeriodicalId":190,"journal":{"name":"Journal of Diabetes Investigation","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jdi.14355","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study aimed to identify metabolic markers for diabetic peripheral neuropathic pain (DPNP) in patients with type 2 diabetes mellitus (T2DM).
Materials and methods: Blood metabolite levels in the amino acid, biogenic amine, sphingomyelin, phosphatidylcholine (PC), carnitines, and hexose classes were analyzed in nondiabetic control (n = 27), T2DM without DPNP (n = 58), and T2DM with DPNP (n = 29) using liquid chromatography tandem mass spectrometry. Variable importance projection (VIP) evaluation by partial least squares discriminant analysis was performed on clinical parameters and metabolites.
Results: Sixteen variables with VIP > 1.0 (P < 0.05) were identified across all patient groups, and 5 variables were identified to discriminate between the two T2DM groups. DPNP patients showed elevated fasting blood glucose, glutamate, PC aa C36:1, lysoPC a C18:1, and lysoPC a C18:2, while low-density lipoprotein cholesterol, phenylalanine, and tryptophan were reduced. Glutamate, lysoPC a C18:1, and lysoPC a C18:2 discriminated T2DM with DPNP from those without DPNP with an AUC of 0.671. The AUC was improved to 0.765 when ratios of metabolite pairs were considered.
Interpretation: Blood metabolites include glutamate, and phospholipid-related metabolites implicated in neuropathic pain may have the potential as biomarkers for DPNP. Further investigation is required to understand the mechanism of action of these altered metabolites in DPNP.
期刊介绍:
Journal of Diabetes Investigation is your core diabetes journal from Asia; the official journal of the Asian Association for the Study of Diabetes (AASD). The journal publishes original research, country reports, commentaries, reviews, mini-reviews, case reports, letters, as well as editorials and news. Embracing clinical and experimental research in diabetes and related areas, the Journal of Diabetes Investigation includes aspects of prevention, treatment, as well as molecular aspects and pathophysiology. Translational research focused on the exchange of ideas between clinicians and researchers is also welcome. Journal of Diabetes Investigation is indexed by Science Citation Index Expanded (SCIE).