Yanjun Wu , Zhenyue Peng , Yimin Hu , Rujing Wang , Taosheng Xu
{"title":"A dual-branch network for crop-type mapping of scattered small agricultural fields in time series remote sensing images","authors":"Yanjun Wu , Zhenyue Peng , Yimin Hu , Rujing Wang , Taosheng Xu","doi":"10.1016/j.rse.2024.114497","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement of remote sensing technology, the recognition of agricultural field parcels using time-series remote sensing images has become an increasingly emphasized task. In this paper, we focus on identifying crops within scattered, irregular, and poorly defined agricultural fields in many Asian regions. We select two representative locations with small and scattered parcels and construct two new time-series remote sensing datasets (JM dataset and CF dataset). We propose a novel deep learning model DBL, the Dual-Branch Model with Long Short-Term Memory (LSTM), which utilizes main branch and supplementary branch to accomplish accurate crop-type mapping. The main branch is designed for capturing global receptive field and the supplementary is designed for temporal and spatial feature refinement. The experiments are conducted to evaluate the performance of the DBL compared with the state-of-the-art (SOTA) models. The results indicate that the DBL model performs exceptionally well on both datasets. Especially on the CF dataset characterized by scattered and irregular plots, the DBL model achieves an overall accuracy (OA) of 97.70% and a mean intersection over union (mIoU) of 90.70%. It outperforms all the SOTA models and becomes the only model to exceed 90% mark on the mIoU score. We also demonstrate the stability and robustness of the DBL across different agricultural regions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"316 ","pages":"Article 114497"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005236","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of remote sensing technology, the recognition of agricultural field parcels using time-series remote sensing images has become an increasingly emphasized task. In this paper, we focus on identifying crops within scattered, irregular, and poorly defined agricultural fields in many Asian regions. We select two representative locations with small and scattered parcels and construct two new time-series remote sensing datasets (JM dataset and CF dataset). We propose a novel deep learning model DBL, the Dual-Branch Model with Long Short-Term Memory (LSTM), which utilizes main branch and supplementary branch to accomplish accurate crop-type mapping. The main branch is designed for capturing global receptive field and the supplementary is designed for temporal and spatial feature refinement. The experiments are conducted to evaluate the performance of the DBL compared with the state-of-the-art (SOTA) models. The results indicate that the DBL model performs exceptionally well on both datasets. Especially on the CF dataset characterized by scattered and irregular plots, the DBL model achieves an overall accuracy (OA) of 97.70% and a mean intersection over union (mIoU) of 90.70%. It outperforms all the SOTA models and becomes the only model to exceed 90% mark on the mIoU score. We also demonstrate the stability and robustness of the DBL across different agricultural regions.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.