Spatial $$\beta $$ -fractional output stabilization of bilinear systems with a time $$\alpha $$ -fractional-order

IF 2.5 2区 数学 Q1 MATHEMATICS
Mustapha Benoudi, Rachid Larhrissi
{"title":"Spatial $$\\beta $$ -fractional output stabilization of bilinear systems with a time $$\\alpha $$ -fractional-order","authors":"Mustapha Benoudi, Rachid Larhrissi","doi":"10.1007/s13540-024-00354-5","DOIUrl":null,"url":null,"abstract":"<p>This research aims to investigate the stabilization problem of the Riemann-Liouville spatial <span>\\(\\beta \\)</span>-fractional output with order <span>\\(\\beta \\in (0,\\ 1)\\)</span> for a class of bilinear dynamical systems with a time Caputo <span>\\(\\alpha \\)</span>-fractional derivative. Initially, we provide definitions and establish the well-posedness of the problem addressed. Furthermore, we introduce a feedback control strategy that ensures both weak and strong stabilization of the <span>\\(\\beta \\)</span>-fractional output, under a broad set of sufficient conditions. Additionally, we present numerical computations to elucidate the effectiveness of the obtained results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"43 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00354-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to investigate the stabilization problem of the Riemann-Liouville spatial \(\beta \)-fractional output with order \(\beta \in (0,\ 1)\) for a class of bilinear dynamical systems with a time Caputo \(\alpha \)-fractional derivative. Initially, we provide definitions and establish the well-posedness of the problem addressed. Furthermore, we introduce a feedback control strategy that ensures both weak and strong stabilization of the \(\beta \)-fractional output, under a broad set of sufficient conditions. Additionally, we present numerical computations to elucidate the effectiveness of the obtained results.

时间分阶双线性系统的空间分阶输出稳定问题
本研究旨在探究一类具有时间卡普托(Caputo)分形导数的双线性动力系统的阶数为 \(\beta \)的Riemann-Liouville空间分形输出的稳定问题。首先,我们提供了定义,并建立了问题的良好拟合。此外,我们还介绍了一种反馈控制策略,它能在一系列充分条件下确保 \(\beta \)-分数输出的弱稳定和强稳定。此外,我们还进行了数值计算,以阐明所获结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信