A Multiple-Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Bangbin Wu, Jingtai Niu, Zhiping Deng, Shuanglong Li, Xinxin Jiang, Wuwen Qian, Zhiqiang Wang
{"title":"A Multiple-Point Deformation Monitoring Model for Ultrahigh Arch Dams Using Temperature Lag and Optimized Gaussian Process Regression","authors":"Bangbin Wu,&nbsp;Jingtai Niu,&nbsp;Zhiping Deng,&nbsp;Shuanglong Li,&nbsp;Xinxin Jiang,&nbsp;Wuwen Qian,&nbsp;Zhiqiang Wang","doi":"10.1155/2024/2308876","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Existing dam displacement statistical methods simulate the thermal effects using simple harmonic functions ignoring the effects of ice periods, extreme heat, and seasonal weather. Moreover, existing data-driven methods usually utilize a separate modeling strategy, inevitably ignoring the spatiotemporal correlation of multiple displacement points in dams, resulting in poor predictive performance. To overcome these shortcomings, this study proposes a novel machine learning (ML)—aided multiple-point dam displacement predictive model considering the temperature hysteresis effect. Firstly, an improved hydraulic-Air_temperture_Time (HT<sub>air</sub>T) statistical monitoring model is developed using the measured air temperature lagging monitoring data. On this basis, the multitask Gaussian process regression (multipoint GPR) algorithm with an improved kernel function to construct a multipoint deformation prediction model for ultrahigh arch dams. Then, the improved meta-heuristic physics-driven Frost algorithm is utilized to determine the optimal parameters of the multipoint GPR model. A high arch dam with a height of 305 m is used as the case study, and five displacement monitoring points are used for validation. Five advanced ML-based algorithms are used to comparatively evaluate and verify the performance of the proposed method in terms of forecast accuracy and interpretability. The HT<sub>air</sub>T statistical model can better simulate the hysteresis effect of temperature on dam deformation. Moreover, the Frost-optimized dam multipoint displacement prediction model with the RQ kernel functions outperforms the other comparison methods in terms of R<sup>2</sup>, mean absolute error (MAE), and root mean squared error (RMSE) evaluation indicators. This indicates the proposed method can mine the spatiotemporal correlation among multiple monitoring points of ultrahigh arch dams, further improving the overall deformation prediction and uncertainty estimation.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2308876","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2308876","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Existing dam displacement statistical methods simulate the thermal effects using simple harmonic functions ignoring the effects of ice periods, extreme heat, and seasonal weather. Moreover, existing data-driven methods usually utilize a separate modeling strategy, inevitably ignoring the spatiotemporal correlation of multiple displacement points in dams, resulting in poor predictive performance. To overcome these shortcomings, this study proposes a novel machine learning (ML)—aided multiple-point dam displacement predictive model considering the temperature hysteresis effect. Firstly, an improved hydraulic-Air_temperture_Time (HTairT) statistical monitoring model is developed using the measured air temperature lagging monitoring data. On this basis, the multitask Gaussian process regression (multipoint GPR) algorithm with an improved kernel function to construct a multipoint deformation prediction model for ultrahigh arch dams. Then, the improved meta-heuristic physics-driven Frost algorithm is utilized to determine the optimal parameters of the multipoint GPR model. A high arch dam with a height of 305 m is used as the case study, and five displacement monitoring points are used for validation. Five advanced ML-based algorithms are used to comparatively evaluate and verify the performance of the proposed method in terms of forecast accuracy and interpretability. The HTairT statistical model can better simulate the hysteresis effect of temperature on dam deformation. Moreover, the Frost-optimized dam multipoint displacement prediction model with the RQ kernel functions outperforms the other comparison methods in terms of R2, mean absolute error (MAE), and root mean squared error (RMSE) evaluation indicators. This indicates the proposed method can mine the spatiotemporal correlation among multiple monitoring points of ultrahigh arch dams, further improving the overall deformation prediction and uncertainty estimation.

Abstract Image

使用温度滞后和优化高斯过程回归的超高拱坝多点变形监测模型
现有的大坝位移统计方法使用简单的谐函数模拟热效应,忽略了冰期、极端高温和季节性天气的影响。此外,现有的数据驱动方法通常采用单独的建模策略,不可避免地忽略了大坝多个位移点的时空相关性,导致预测效果不佳。为了克服这些缺陷,本研究提出了一种考虑温度滞后效应的新型机器学习(ML)辅助多点大坝位移预测模型。首先,利用测得的空气温度滞后监测数据,建立了改进的水力-空气-孔径-时间(HTairT)统计监测模型。在此基础上,利用改进核函数的多任务高斯过程回归(多点 GPR)算法,构建了超高拱坝的多点变形预测模型。然后,利用改进的元启发式物理驱动弗罗斯特算法确定多点 GPR 模型的最佳参数。以高度为 305 米的高拱坝为例,使用五个位移监测点进行验证。采用五种先进的基于 ML 的算法,从预测精度和可解释性方面对所提方法的性能进行了比较评估和验证。HTairT 统计模型能更好地模拟温度对大坝变形的滞后效应。此外,采用 RQ 核函数的 Frost 优化大坝多点位移预测模型在 R2、平均绝对误差(MAE)和均方根误差(RMSE)等评价指标上均优于其他对比方法。这表明所提出的方法可以挖掘超高拱坝多个监测点之间的时空相关性,进一步提高整体变形预测和不确定性估计的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信