{"title":"YOLOv7-XAI: Multi-Class Skin Lesion Diagnosis Using Explainable AI With Fair Decision Making","authors":"Nirmala Veeramani, Premaladha Jayaraman","doi":"10.1002/ima.23214","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Skin cancer, a prevalent and potentially life-threatening condition, demands accurate and timely detection for effective intervention. It is an uncontrolled growth of abnormal cells in the human body. Studies are underway to determine if a skin lesion is benign (non-cancerous) or malignant (cancerous), but the biggest challenge for a doctor is determining the type of skin cancer. As a result, determining the type of tumour is crucial for the right course of treatment. In this study, we introduce a groundbreaking approach to multi-class skin cancer detection by harnessing the power of Explainable Artificial Intelligence (XAI) in conjunction with a customised You Only Look Once (YOLOv7) architecture. Our research focuses on enhancing the YOLOv7 framework to accurately discern 8 different skin cancer classes, including melanoma, basal cell carcinoma, and squamous cell carcinoma. The YOLOv7 model is the robust backbone, enriched with features tailored for precise multi-class classification. Concurrently, integrating XAI elements, Local Interpretable Modal-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) ensures transparent decision-making processes, enabling healthcare professionals to interpret and trust the model's predictions. This innovative synergy between YOLOv7 and XAI heralds a new era in interpretability, resulting in high-performance skin cancer diagnostics. The obtained results are 96.8%, 94.2%, 95.6%, and 95.8%, evaluated with popular quantitative metrics such as accuracy, precision, recall, and F1 score, respectively.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23214","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Skin cancer, a prevalent and potentially life-threatening condition, demands accurate and timely detection for effective intervention. It is an uncontrolled growth of abnormal cells in the human body. Studies are underway to determine if a skin lesion is benign (non-cancerous) or malignant (cancerous), but the biggest challenge for a doctor is determining the type of skin cancer. As a result, determining the type of tumour is crucial for the right course of treatment. In this study, we introduce a groundbreaking approach to multi-class skin cancer detection by harnessing the power of Explainable Artificial Intelligence (XAI) in conjunction with a customised You Only Look Once (YOLOv7) architecture. Our research focuses on enhancing the YOLOv7 framework to accurately discern 8 different skin cancer classes, including melanoma, basal cell carcinoma, and squamous cell carcinoma. The YOLOv7 model is the robust backbone, enriched with features tailored for precise multi-class classification. Concurrently, integrating XAI elements, Local Interpretable Modal-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) ensures transparent decision-making processes, enabling healthcare professionals to interpret and trust the model's predictions. This innovative synergy between YOLOv7 and XAI heralds a new era in interpretability, resulting in high-performance skin cancer diagnostics. The obtained results are 96.8%, 94.2%, 95.6%, and 95.8%, evaluated with popular quantitative metrics such as accuracy, precision, recall, and F1 score, respectively.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.