A Risk Stratification Study of Ultrasound Images of Thyroid Nodules Based on Improved DETR

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhang Le, Yue Liang, Xiaokang Hu, Taorong Qiu, Pan Xu
{"title":"A Risk Stratification Study of Ultrasound Images of Thyroid Nodules Based on Improved DETR","authors":"Zhang Le,&nbsp;Yue Liang,&nbsp;Xiaokang Hu,&nbsp;Taorong Qiu,&nbsp;Pan Xu","doi":"10.1002/ima.23219","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) standard is based on the Chinese current medical context. However, at present, there is a lack of C-TIRADS-based automatic computer-aided diagnosis system for thyroid nodule ultrasound images, and the existing algorithms for detecting and recognizing thyroid nodules are basically for the dichotomous classification of benign and malignant. We used the DETR (detection transformer) model as a baseline model and carried out model enhancements to address the shortcomings of unsatisfactory classification accuracy and difficulty in detecting small thyroid nodules in the DETR model. First, to investigate the method of acquiring multi-scale features of thyroid nodule ultrasound images, we choose TResNet-L as the feature extraction network and introduce multi-scale feature information and group convolution, thereby enhancing the model's multi-label classification accuracy. Second, a parallel decoder architecture for multi-label thyroid nodule ultrasound image classification is designed to enhance the learning of correlation between pathological feature class labels, aiming to improve the multi-label classification accuracy of the detection model. Third, the loss function of the detection model is improved. We propose a linear combination of Smooth L1-Loss and CIoU Loss as the model's bounding box loss function and asymmetric loss as the model's multi-label classification loss function, aiming to further improve the detection model's detection accuracy for small thyroid nodules. The experiment results show that the improved DETR model achieves an AP of 92.4% and 81.6% with IoU thresholds of 0.5 and 0.75, respectively.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23219","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) standard is based on the Chinese current medical context. However, at present, there is a lack of C-TIRADS-based automatic computer-aided diagnosis system for thyroid nodule ultrasound images, and the existing algorithms for detecting and recognizing thyroid nodules are basically for the dichotomous classification of benign and malignant. We used the DETR (detection transformer) model as a baseline model and carried out model enhancements to address the shortcomings of unsatisfactory classification accuracy and difficulty in detecting small thyroid nodules in the DETR model. First, to investigate the method of acquiring multi-scale features of thyroid nodule ultrasound images, we choose TResNet-L as the feature extraction network and introduce multi-scale feature information and group convolution, thereby enhancing the model's multi-label classification accuracy. Second, a parallel decoder architecture for multi-label thyroid nodule ultrasound image classification is designed to enhance the learning of correlation between pathological feature class labels, aiming to improve the multi-label classification accuracy of the detection model. Third, the loss function of the detection model is improved. We propose a linear combination of Smooth L1-Loss and CIoU Loss as the model's bounding box loss function and asymmetric loss as the model's multi-label classification loss function, aiming to further improve the detection model's detection accuracy for small thyroid nodules. The experiment results show that the improved DETR model achieves an AP of 92.4% and 81.6% with IoU thresholds of 0.5 and 0.75, respectively.

基于改进型 DETR 的甲状腺结节超声图像风险分层研究
中国甲状腺影像报告和数据系统(C-TIRADS)标准是基于中国当前的医疗背景制定的。然而,目前还缺乏基于 C-TIRADS 的甲状腺结节超声图像计算机辅助自动诊断系统,现有的甲状腺结节检测和识别算法基本上是良性和恶性的二分法。我们以 DETR(检测转换器)模型为基线模型,针对 DETR 模型中分类精度不理想和难以检测甲状腺小结节的缺点进行了模型增强。首先,为了研究甲状腺结节超声图像多尺度特征的获取方法,我们选择了 TResNet-L 作为特征提取网络,并引入了多尺度特征信息和群卷积,从而提高了模型的多标签分类精度。其次,设计了用于甲状腺结节超声图像多标签分类的并行解码器架构,加强病理特征类标签之间的相关性学习,旨在提高检测模型的多标签分类精度。第三,改进检测模型的损失函数。我们提出了平滑 L1 损失和 CIoU 损失的线性组合作为模型的边界框损失函数,非对称损失作为模型的多标签分类损失函数,旨在进一步提高检测模型对甲状腺小结节的检测精度。实验结果表明,改进后的DETR模型在IoU阈值为0.5和0.75时,AP分别达到92.4%和81.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信