A. P. Broz, B. Horgan, H. Kalucha, J. R. Johnson, C. Royer, E. Dehouck, L. Mandon, E. L. Cardarelli, B. Garczynski, J. H. Haber, K. C. Benison, E. Ives, K. M. Stack, N. Mangold, T. Bosak, J. I. Simon, P. Gasda, E. Clave, B. S. Kathir, M. Zawaski, R. Barnes, S. Siljeström, N. Randazzo, J. M. Madariaga, K. Farley, J. Maki, L. Kah, W. Rapin, L. L. Kivrak, A. J. Williams, E. Hausrath, J. I. Núñez, F. Gómez, A. Steele, T. Fouchet, J. F. Bell, R. C. Wiens
{"title":"Diagenetic History and Biosignature Preservation Potential of Fine-Grained Rocks at Hogwallow Flats, Jezero Crater, Mars","authors":"A. P. Broz, B. Horgan, H. Kalucha, J. R. Johnson, C. Royer, E. Dehouck, L. Mandon, E. L. Cardarelli, B. Garczynski, J. H. Haber, K. C. Benison, E. Ives, K. M. Stack, N. Mangold, T. Bosak, J. I. Simon, P. Gasda, E. Clave, B. S. Kathir, M. Zawaski, R. Barnes, S. Siljeström, N. Randazzo, J. M. Madariaga, K. Farley, J. Maki, L. Kah, W. Rapin, L. L. Kivrak, A. J. Williams, E. Hausrath, J. I. Núñez, F. Gómez, A. Steele, T. Fouchet, J. F. Bell, R. C. Wiens","doi":"10.1029/2024JE008520","DOIUrl":null,"url":null,"abstract":"<p>The Mars 2020 <i>Perseverance</i> rover discovered fine-grained clastic sedimentary rocks in the “Hogwallow Flats” member of the “Shenandoah” formation at Jezero crater, Mars. The Hogwallow Flats member shows evidence of multiple phases of diagenesis including Fe/Mg-sulfate-rich (20–30 wt. %) outcrop transitioning downward into red-purple-gray mottled outcrop, Fe/Mg clay minerals and oxides, putative concretions, occasional Ca sulfate-filled fractures, and variable redox state over small (cm) spatial scales. This work uses Mastcam-Z and SuperCam instrument data to characterize and interpret the sedimentary facies, mineralogy and diagenetic features of the Hogwallow Flats member. The lateral continuity of bedrock similar in tone and morphology to Hogwallow Flats that occurs over several km within the western Jezero sedimentary fan suggests widespread deposition in a lacustrine or alluvial floodplain setting. Following deposition, sediments interacted with multiple fluids of variable redox state and salinity under habitable conditions. Three drilled sample cores were collected from this interval of the Shenandoah formation as part of the Mars Sample Return campaign. These samples have very high potential to preserve organic compounds and biosignatures. Drill cores may partially include dark-toned mottled outcrop that lies directly below light-toned, sulfate-cemented outcrop. This facies may represent some of the least oxidized material observed at this interval of the Shenandoah formation. This work reconstructs the diagenetic history of the Hogwallow Flats member and discusses implications for biosignature preservation in rock samples for possible return to Earth.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008520","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008520","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Mars 2020 Perseverance rover discovered fine-grained clastic sedimentary rocks in the “Hogwallow Flats” member of the “Shenandoah” formation at Jezero crater, Mars. The Hogwallow Flats member shows evidence of multiple phases of diagenesis including Fe/Mg-sulfate-rich (20–30 wt. %) outcrop transitioning downward into red-purple-gray mottled outcrop, Fe/Mg clay minerals and oxides, putative concretions, occasional Ca sulfate-filled fractures, and variable redox state over small (cm) spatial scales. This work uses Mastcam-Z and SuperCam instrument data to characterize and interpret the sedimentary facies, mineralogy and diagenetic features of the Hogwallow Flats member. The lateral continuity of bedrock similar in tone and morphology to Hogwallow Flats that occurs over several km within the western Jezero sedimentary fan suggests widespread deposition in a lacustrine or alluvial floodplain setting. Following deposition, sediments interacted with multiple fluids of variable redox state and salinity under habitable conditions. Three drilled sample cores were collected from this interval of the Shenandoah formation as part of the Mars Sample Return campaign. These samples have very high potential to preserve organic compounds and biosignatures. Drill cores may partially include dark-toned mottled outcrop that lies directly below light-toned, sulfate-cemented outcrop. This facies may represent some of the least oxidized material observed at this interval of the Shenandoah formation. This work reconstructs the diagenetic history of the Hogwallow Flats member and discusses implications for biosignature preservation in rock samples for possible return to Earth.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.