Suman Gautam, Alexander F I Osman, Dylan Richeson, Somayeh Gholami, Binod Manandhar, Sharmin Alam, William Y Song
{"title":"Attention 3D UNET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Intracavitary applicators.","authors":"Suman Gautam, Alexander F I Osman, Dylan Richeson, Somayeh Gholami, Binod Manandhar, Sharmin Alam, William Y Song","doi":"10.1002/acm2.14568","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, but development has primarily been on external beam radiation therapy. Thus, there is a need for translation to brachytherapy.</p><p><strong>Purpose: </strong>This study proposes a dose prediction model utilizing an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate intracavitary brachytherapy treatment planning with tandem-and-ovoid/ring applicators.</p><p><strong>Methods: </strong>A multi-institutional data set consisting of 77 retrospective clinical brachytherapy plans was utilized in this study. The data were preprocessed and augmented to increase the number of plans to 252. A 3D UNET architecture with attention gates was constructed and trained for mapping the contour information to dose distribution. The trained model was evaluated on a testing data set using various metrics, including dose statistics and dose-volume indices. We also trained a baseline UNET model for a fair comparison.</p><p><strong>Results: </strong>The attention-gated 3D UNET model exhibited competitive accuracy in predicting dose distributions similar to the ground truth. The average values of the mean absolute errors were 0.46 ± 11.71 Gy (vs. 0.47 ± 9.16 Gy for a baseline UNET) in CTV<sub>HR</sub>, 0.55 ± 0.67 Gy (vs. 0.70 ± 1.54 Gy for a baseline UNET) in bladder, 0.42 ± 0.46 Gy (vs. 0.49 ± 1.34 Gy for a baseline UNET) in rectum, and 0.31 ± 0.65 Gy (vs. 0.20 ± 3.76 Gy for a baseline UNET) in sigmoid. Our results showed that the mean individual differences in ΔD<sub>2cc</sub> for bladder, rectum, and sigmoid were 0.38 ± 1.19 (p = 0.50), 0.43 ± 0.71 (p = 0.41), and -0.47 ± 0.79 (p = 0.30) Gy, respectively. Similarly, the mean individual differences in ΔD<sub>1cc</sub> for bladder, rectum, and sigmoid were 0.09 ± 1.21 (p = 0.36), 0.20 ± 0.95 (p = 0.24), and -0.21 ± 0.59 (p = 0.30) Gy. The mean individual differences for ΔD<sub>90</sub>, ΔV<sub>100%</sub>, ΔV<sub>150%</sub>, and ΔV<sub>200%</sub> of the CTV<sub>HR</sub> were -0.45 ± 2.42 (p = 0.26) Gy, 0.55 ± 9.42% (p = 0.78), 0.82 ± 4.21% (p = 0.81), and -0.80 ± 10.48% (p = 0.36), respectively. The model requires less than 5 s to predict a full 3D dose distribution for a new patient plan.</p><p><strong>Conclusion: </strong>Attention-gated 3D UNET revealed a promising capability in predicting voxel-wise dose distributions compared to 3D UNET. This model could be deployed for clinical use to predict 3D dose distributions for near real-time decision-making before planning, quality assurance, and guiding future automated planning, making the current workflow more efficient.</p>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":" ","pages":"e14568"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/acm2.14568","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, but development has primarily been on external beam radiation therapy. Thus, there is a need for translation to brachytherapy.
Purpose: This study proposes a dose prediction model utilizing an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate intracavitary brachytherapy treatment planning with tandem-and-ovoid/ring applicators.
Methods: A multi-institutional data set consisting of 77 retrospective clinical brachytherapy plans was utilized in this study. The data were preprocessed and augmented to increase the number of plans to 252. A 3D UNET architecture with attention gates was constructed and trained for mapping the contour information to dose distribution. The trained model was evaluated on a testing data set using various metrics, including dose statistics and dose-volume indices. We also trained a baseline UNET model for a fair comparison.
Results: The attention-gated 3D UNET model exhibited competitive accuracy in predicting dose distributions similar to the ground truth. The average values of the mean absolute errors were 0.46 ± 11.71 Gy (vs. 0.47 ± 9.16 Gy for a baseline UNET) in CTVHR, 0.55 ± 0.67 Gy (vs. 0.70 ± 1.54 Gy for a baseline UNET) in bladder, 0.42 ± 0.46 Gy (vs. 0.49 ± 1.34 Gy for a baseline UNET) in rectum, and 0.31 ± 0.65 Gy (vs. 0.20 ± 3.76 Gy for a baseline UNET) in sigmoid. Our results showed that the mean individual differences in ΔD2cc for bladder, rectum, and sigmoid were 0.38 ± 1.19 (p = 0.50), 0.43 ± 0.71 (p = 0.41), and -0.47 ± 0.79 (p = 0.30) Gy, respectively. Similarly, the mean individual differences in ΔD1cc for bladder, rectum, and sigmoid were 0.09 ± 1.21 (p = 0.36), 0.20 ± 0.95 (p = 0.24), and -0.21 ± 0.59 (p = 0.30) Gy. The mean individual differences for ΔD90, ΔV100%, ΔV150%, and ΔV200% of the CTVHR were -0.45 ± 2.42 (p = 0.26) Gy, 0.55 ± 9.42% (p = 0.78), 0.82 ± 4.21% (p = 0.81), and -0.80 ± 10.48% (p = 0.36), respectively. The model requires less than 5 s to predict a full 3D dose distribution for a new patient plan.
Conclusion: Attention-gated 3D UNET revealed a promising capability in predicting voxel-wise dose distributions compared to 3D UNET. This model could be deployed for clinical use to predict 3D dose distributions for near real-time decision-making before planning, quality assurance, and guiding future automated planning, making the current workflow more efficient.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic