Benjamin Rodriguez, Daniel Rivera, Jack Y Zhang, Cole Brown, Tirone Young, Tyree Williams, Justiss Kallos, Sakibul Huq, Constantinos Hadjpanayis
{"title":"Innovations in intraoperative therapies in neurosurgical oncology: a narrative review.","authors":"Benjamin Rodriguez, Daniel Rivera, Jack Y Zhang, Cole Brown, Tirone Young, Tyree Williams, Justiss Kallos, Sakibul Huq, Constantinos Hadjpanayis","doi":"10.1007/s11060-024-04882-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High-grade gliomas (HGG) represent the most aggressive primary brain tumors in adults, characterized by high recurrence rates due to incomplete resection. This review explores the effectiveness of emerging intraoperative therapies that may extend survival by targeting residual tumor cells. The main research question addressed is: What recent intraoperative techniques show promise for complementing surgical resection in HGG treatment?</p><p><strong>Methods: </strong>A comprehensive literature review was conducted, examining recent studies on intraoperative therapeutic modalities that support surgical resection of HGG. Techniques reviewed include laser interstitial thermal therapy (LITT), intraoperative brachytherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), and focused ultrasound (FUS). Each modality was evaluated based on clinical application, evidence of effectiveness, and potential for integration into standard HGG treatment protocols.</p><p><strong>Results: </strong>Findings indicate that these therapies offer distinct mechanisms to target residual tumor cells: LITT provides localized thermal ablation; intraoperative brachytherapy delivers sustained radiation; PDT and SDT activate cytotoxic agents in tumor cells; and FUS enables precise energy delivery. Each method has shown varying levels of clinical success, with PDT and LITT currently more widely implemented, while SDT and FUS are promising but under investigation.</p><p><strong>Conclusion: </strong>Intraoperative therapies hold potential to improve surgical outcomes for HGG by reducing residual tumor burden. While further clinical studies are needed to optimize these techniques, early evidence supports their potential to enhance the effectiveness of surgical resection and improve patient survival in HGG management.</p>","PeriodicalId":16425,"journal":{"name":"Journal of Neuro-Oncology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuro-Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11060-024-04882-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: High-grade gliomas (HGG) represent the most aggressive primary brain tumors in adults, characterized by high recurrence rates due to incomplete resection. This review explores the effectiveness of emerging intraoperative therapies that may extend survival by targeting residual tumor cells. The main research question addressed is: What recent intraoperative techniques show promise for complementing surgical resection in HGG treatment?
Methods: A comprehensive literature review was conducted, examining recent studies on intraoperative therapeutic modalities that support surgical resection of HGG. Techniques reviewed include laser interstitial thermal therapy (LITT), intraoperative brachytherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), and focused ultrasound (FUS). Each modality was evaluated based on clinical application, evidence of effectiveness, and potential for integration into standard HGG treatment protocols.
Results: Findings indicate that these therapies offer distinct mechanisms to target residual tumor cells: LITT provides localized thermal ablation; intraoperative brachytherapy delivers sustained radiation; PDT and SDT activate cytotoxic agents in tumor cells; and FUS enables precise energy delivery. Each method has shown varying levels of clinical success, with PDT and LITT currently more widely implemented, while SDT and FUS are promising but under investigation.
Conclusion: Intraoperative therapies hold potential to improve surgical outcomes for HGG by reducing residual tumor burden. While further clinical studies are needed to optimize these techniques, early evidence supports their potential to enhance the effectiveness of surgical resection and improve patient survival in HGG management.
期刊介绍:
The Journal of Neuro-Oncology is a multi-disciplinary journal encompassing basic, applied, and clinical investigations in all research areas as they relate to cancer and the central nervous system. It provides a single forum for communication among neurologists, neurosurgeons, radiotherapists, medical oncologists, neuropathologists, neurodiagnosticians, and laboratory-based oncologists conducting relevant research. The Journal of Neuro-Oncology does not seek to isolate the field, but rather to focus the efforts of many disciplines in one publication through a format which pulls together these diverse interests. More than any other field of oncology, cancer of the central nervous system requires multi-disciplinary approaches. To alleviate having to scan dozens of journals of cell biology, pathology, laboratory and clinical endeavours, JNO is a periodical in which current, high-quality, relevant research in all aspects of neuro-oncology may be found.