A systematic benchmark of copy number variation detection tools for high density SNP genotyping arrays

IF 3.4 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
M.N. van Baardwijk , L.S.E.M. Heijnen , H. Zhao , M. Baudis , A.P. Stubbs
{"title":"A systematic benchmark of copy number variation detection tools for high density SNP genotyping arrays","authors":"M.N. van Baardwijk ,&nbsp;L.S.E.M. Heijnen ,&nbsp;H. Zhao ,&nbsp;M. Baudis ,&nbsp;A.P. Stubbs","doi":"10.1016/j.ygeno.2024.110962","DOIUrl":null,"url":null,"abstract":"<div><div>Copy Number Variations (CNVs) are crucial in various diseases, especially cancer, but detecting them accurately from SNP genotyping arrays remains challenging. Therefore, this study benchmarked five CNV detection tools—PennCNV, QuantiSNP, iPattern, EnsembleCNV, and R-GADA—using SNP array and WGS data from 2002 individuals of the DRAGEN re-analysis of the 1000 Genomes project. Results showed significant variability in tool performance. R-GADA had the highest recall but low precision, while PennCNV was the most reliable in terms of precision and F1 score. EnsembleCNV improved recall by combining multiple callers but increased false positives. Overall, current tools, including new methods, do not outperform PennCNV in precise CNV detection. Improved reference data and consensus on true positive CNV calls are necessary. This study provides valuable insights and scalable workflows for researchers selecting CNV detection methods in future studies.</div></div>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"116 6","pages":"Article 110962"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888754324001836","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Copy Number Variations (CNVs) are crucial in various diseases, especially cancer, but detecting them accurately from SNP genotyping arrays remains challenging. Therefore, this study benchmarked five CNV detection tools—PennCNV, QuantiSNP, iPattern, EnsembleCNV, and R-GADA—using SNP array and WGS data from 2002 individuals of the DRAGEN re-analysis of the 1000 Genomes project. Results showed significant variability in tool performance. R-GADA had the highest recall but low precision, while PennCNV was the most reliable in terms of precision and F1 score. EnsembleCNV improved recall by combining multiple callers but increased false positives. Overall, current tools, including new methods, do not outperform PennCNV in precise CNV detection. Improved reference data and consensus on true positive CNV calls are necessary. This study provides valuable insights and scalable workflows for researchers selecting CNV detection methods in future studies.
高密度 SNP 基因分型阵列拷贝数变异检测工具的系统基准。
拷贝数变异(CNV)在各种疾病尤其是癌症中至关重要,但从 SNP 基因分型阵列中准确检测 CNV 仍是一项挑战。因此,本研究利用千人基因组计划 DRAGEN 再分析 2002 个个体的 SNP 阵列和 WGS 数据,对五种 CNV 检测工具--PennCNV、QuantiSNP、iPattern、EnsembleCNV 和 R-GADA 进行了基准测试。结果显示,工具性能存在很大差异。R-GADA 的召回率最高,但精确度较低,而 PennCNV 在精确度和 F1 分数方面最为可靠。EnsembleCNV 通过结合多个调用者提高了召回率,但增加了假阳性。总体而言,包括新方法在内的现有工具在精确 CNV 检测方面并没有超过 PennCNV。有必要改进参考数据并就真阳性 CNV 调用达成共识。这项研究为研究人员在未来的研究中选择 CNV 检测方法提供了宝贵的见解和可扩展的工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genomics
Genomics 生物-生物工程与应用微生物
CiteScore
9.60
自引率
2.30%
发文量
260
审稿时长
60 days
期刊介绍: Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation. As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信