Shrinking shrimp-shaped domains and multistability in the dissipative asymmetric kicked rotor map.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-11-01 DOI:10.1063/5.0233324
Matheus Rolim Sales, Michele Mugnaine, Edson Denis Leonel, Iberê L Caldas, José D Szezech
{"title":"Shrinking shrimp-shaped domains and multistability in the dissipative asymmetric kicked rotor map.","authors":"Matheus Rolim Sales, Michele Mugnaine, Edson Denis Leonel, Iberê L Caldas, José D Szezech","doi":"10.1063/5.0233324","DOIUrl":null,"url":null,"abstract":"<p><p>An interesting feature in dissipative nonlinear systems is the emergence of characteristic domains in parameter space that exhibit periodic temporal evolution, known as shrimp-shaped domains. We investigate the parameter space of the dissipative asymmetric kicked rotor map and show that, in the regime of strong dissipation, the shrimp-shaped domains repeat themselves as the nonlinearity parameter increases while maintaining the same period. We analyze the dependence of the length of each periodic domain with the nonlinearity parameter, revealing that it follows a power law with the same exponent regardless of the dissipation parameter. Additionally, we find that the distance between adjacent shrimp-shaped domains is scaling invariant with respect to the dissipation parameter. Furthermore, we show that for weaker dissipation, a multistable scenario emerges within the periodic domains. We find that as the dissipation gets weaker, the ratio of multistable parameters for each periodic domain increases, and the area of the periodic basin decreases as the nonlinearity parameter increases.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233324","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An interesting feature in dissipative nonlinear systems is the emergence of characteristic domains in parameter space that exhibit periodic temporal evolution, known as shrimp-shaped domains. We investigate the parameter space of the dissipative asymmetric kicked rotor map and show that, in the regime of strong dissipation, the shrimp-shaped domains repeat themselves as the nonlinearity parameter increases while maintaining the same period. We analyze the dependence of the length of each periodic domain with the nonlinearity parameter, revealing that it follows a power law with the same exponent regardless of the dissipation parameter. Additionally, we find that the distance between adjacent shrimp-shaped domains is scaling invariant with respect to the dissipation parameter. Furthermore, we show that for weaker dissipation, a multistable scenario emerges within the periodic domains. We find that as the dissipation gets weaker, the ratio of multistable parameters for each periodic domain increases, and the area of the periodic basin decreases as the nonlinearity parameter increases.

耗散非对称踢转子图中的收缩虾形域和多稳定性。
耗散非线性系统的一个有趣特征是在参数空间出现特征域,这些域表现出周期性的时间演化,被称为虾形域。我们对耗散非对称踢转子图的参数空间进行了研究,结果表明,在强耗散系统中,虾形域会随着非线性参数的增加而重复出现,同时保持相同的周期。我们分析了每个周期畴的长度与非线性参数的关系,发现无论耗散参数如何,它都遵循一个指数相同的幂律。此外,我们还发现相邻虾形域之间的距离与耗散参数无关。此外,我们还发现,在耗散较弱的情况下,周期性畴内会出现多稳态情况。我们发现,随着耗散的减弱,每个周期域的多稳态参数比例会增加,周期盆地的面积会随着非线性参数的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信