Dark gap solitons in bichromatic optical superlattices under cubic-quintic nonlinearities.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-11-01 DOI:10.1063/5.0232509
Junbo Chen, Dumitru Mihalache, Milivoj R Belić, Jincheng Shi, Danfeng Zhu, Dingnan Deng, Shaobin Qiu, Riwei Liao, Xing Zhu, Liangwei Zeng
{"title":"Dark gap solitons in bichromatic optical superlattices under cubic-quintic nonlinearities.","authors":"Junbo Chen, Dumitru Mihalache, Milivoj R Belić, Jincheng Shi, Danfeng Zhu, Dingnan Deng, Shaobin Qiu, Riwei Liao, Xing Zhu, Liangwei Zeng","doi":"10.1063/5.0232509","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate the existence of two types of dark gap solitary waves-the dark gap solitons and the dark gap soliton clusters-in Bose-Einstein condensates trapped in a bichromatic optical superlattice with cubic-quintic nonlinearities. The background of these dark soliton families is different from the one in a common monochromatic linear lattice; namely, the background in our model is composed of two types of Gaussian-like pulses, whereas in the monochromatic linear lattice, it is composed of only one type of Gaussian-like pulses. Such a special background of dark soliton families is convenient for the manipulation of solitons by the parameters of bichromatic and chemical potentials. The dark soliton families in the first, second, and third bandgap in our model are studied. Their stability is assessed by the linear-stability analysis, and stable as well as unstable propagation of these gap solitons are displayed. The profiles, stability, and perturbed evolution of both types of dark soliton families are distinctly presented in this work.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0232509","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate the existence of two types of dark gap solitary waves-the dark gap solitons and the dark gap soliton clusters-in Bose-Einstein condensates trapped in a bichromatic optical superlattice with cubic-quintic nonlinearities. The background of these dark soliton families is different from the one in a common monochromatic linear lattice; namely, the background in our model is composed of two types of Gaussian-like pulses, whereas in the monochromatic linear lattice, it is composed of only one type of Gaussian-like pulses. Such a special background of dark soliton families is convenient for the manipulation of solitons by the parameters of bichromatic and chemical potentials. The dark soliton families in the first, second, and third bandgap in our model are studied. Their stability is assessed by the linear-stability analysis, and stable as well as unstable propagation of these gap solitons are displayed. The profiles, stability, and perturbed evolution of both types of dark soliton families are distinctly presented in this work.

立方-五次非线性条件下双色光学超晶格中的暗隙孤子
我们证明了被困在具有立方-五次非线性的双色光学超晶格中的玻色-爱因斯坦冷凝物存在两种类型的暗间隙孤波--暗间隙孤子和暗间隙孤子簇。这些暗孤子家族的背景与普通单色线性晶格中的背景不同,即我们模型中的背景是由两类高斯样脉冲组成的,而在单色线性晶格中,背景只由一类高斯样脉冲组成。这种特殊的暗孤子族背景便于用双色电势和化学电势的参数来操纵孤子。我们研究了模型中第一、第二和第三带隙的暗孤子族。通过线性稳定性分析评估了它们的稳定性,并展示了这些带隙孤子的稳定和不稳定传播。这两类暗孤子族的轮廓、稳定性和扰动演化都在这项工作中得到了清晰的展示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信