Rugiya Alieva , Anna Keshek , Timofei Zatsepin , Victor Orlov , Andrey Aralov , Elena Zavyalova
{"title":"Kinetics of i-motif folding within the duplex context","authors":"Rugiya Alieva , Anna Keshek , Timofei Zatsepin , Victor Orlov , Andrey Aralov , Elena Zavyalova","doi":"10.1016/j.bpc.2024.107350","DOIUrl":null,"url":null,"abstract":"<div><div>Non-canonical nucleic acid structures possess an ability to interact selectively with proteins, thereby exerting influence over various intracellular processes. Numerous studies indicate that genomic G-quadruplexes and i-motifs are involved in the regulation of transcription. These structures are formed temporarily during the unwinding of the DNA double helix; and their direct determination is a rather difficult task. In addition, i-motif folding is pH-dependent, with most i-motifs having low stability at neutral pH. However, some genomic i-motifs with long cytosine repeats were shown to be stable at pH 7.3, suggesting their functionality within the nucleus. Here we studied pH-dependent behavior of a model i-motif with flanking sequences that forms a duplex motif. Kinetic studies on bimodular structures with cytosine residues replaced with an environment-sensitive fluorescent label reveal the stabilization of the i-motif structure near the i-motif-duplex junction. These results highlight the importance of the natural environment of i-motifs for the correct assessment of their stability.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"316 ","pages":"Article 107350"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001790","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-canonical nucleic acid structures possess an ability to interact selectively with proteins, thereby exerting influence over various intracellular processes. Numerous studies indicate that genomic G-quadruplexes and i-motifs are involved in the regulation of transcription. These structures are formed temporarily during the unwinding of the DNA double helix; and their direct determination is a rather difficult task. In addition, i-motif folding is pH-dependent, with most i-motifs having low stability at neutral pH. However, some genomic i-motifs with long cytosine repeats were shown to be stable at pH 7.3, suggesting their functionality within the nucleus. Here we studied pH-dependent behavior of a model i-motif with flanking sequences that forms a duplex motif. Kinetic studies on bimodular structures with cytosine residues replaced with an environment-sensitive fluorescent label reveal the stabilization of the i-motif structure near the i-motif-duplex junction. These results highlight the importance of the natural environment of i-motifs for the correct assessment of their stability.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.