Haydee Artaza, Ksenia Lavrichenko, Anette S B Wolff, Ellen C Røyrvik, Marc Vaudel, Stefan Johansson
{"title":"Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline.","authors":"Haydee Artaza, Ksenia Lavrichenko, Anette S B Wolff, Ellen C Røyrvik, Marc Vaudel, Stefan Johansson","doi":"10.1186/s12859-024-05979-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rare copy number variants (CNVs) significantly influence the human genome and may contribute to disease susceptibility. High-throughput SNP genotyping platforms provide data that can be used for CNV detection, but it requires the complex pipelining of bioinformatic tools. Here, we propose a flexible bioinformatic pipeline for rare CNV analysis from human SNP array data.</p><p><strong>Results: </strong>The pipeline consists of two major sub-pipelines: (1) Calling and quality control (QC) analysis, and (2) Rare CNV analysis. It is implemented in Snakemake following a rule-based structure that enables automation and scalability while maintaining flexibility.</p><p><strong>Conclusions: </strong>Our pipeline automates the detection and analysis of rare CNVs. It implements a rigorous CNV quality control, assesses the frequencies of these rare CNVs in patients versus controls, and evaluates the impact of CNVs on specific genes or pathways. We hence aim to provide an efficient yet flexible bioinformatic framework to investigate rare CNVs in biomedical research.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"357"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566566/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05979-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Rare copy number variants (CNVs) significantly influence the human genome and may contribute to disease susceptibility. High-throughput SNP genotyping platforms provide data that can be used for CNV detection, but it requires the complex pipelining of bioinformatic tools. Here, we propose a flexible bioinformatic pipeline for rare CNV analysis from human SNP array data.
Results: The pipeline consists of two major sub-pipelines: (1) Calling and quality control (QC) analysis, and (2) Rare CNV analysis. It is implemented in Snakemake following a rule-based structure that enables automation and scalability while maintaining flexibility.
Conclusions: Our pipeline automates the detection and analysis of rare CNVs. It implements a rigorous CNV quality control, assesses the frequencies of these rare CNVs in patients versus controls, and evaluates the impact of CNVs on specific genes or pathways. We hence aim to provide an efficient yet flexible bioinformatic framework to investigate rare CNVs in biomedical research.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.