Yan Zhu , Bo Liang , Jijia Zhu , Zhibin Gong , Xiping Gao , Dahu Yao , Jing Chen , Chang Lu , Xinchang Pang
{"title":"Hydrogel-based bimodal sensors for high-sensitivity independent detection of temperature and strain","authors":"Yan Zhu , Bo Liang , Jijia Zhu , Zhibin Gong , Xiping Gao , Dahu Yao , Jing Chen , Chang Lu , Xinchang Pang","doi":"10.1016/j.jcis.2024.11.032","DOIUrl":null,"url":null,"abstract":"<div><div>Avoiding crosstalk between strain and temperature detection is crucial for bimodal hydrogel sensors, yet achieving high sensitivity for both parameters while maintaining signal decoupling remains a significant challenge. In this study, a bimodal sensor was developed by locally coating poly (3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) onto the hydrogel surface, creating distinct regions for strain and temperature detection. These regions form localized strain concentration zones and wrinkle structures, respectively. The localized strain concentration enhances the sensor’s sensitivity from 8.5 to 18.5. Additionally, the sensor demonstrates a low detection limit (0.2 %), a wide detection range (up to 1356 %), a fast response time, and excellent cyclic stability for strain measurements. The temperature detection region, leveraging the thermoelectric effect, improves the Seebeck coefficient of the PEDOT: PSS coating from 20 to 122.86 μVK<sup>−1</sup> through de-doping and energy band modulation. Moreover, the temperature sensing of the PEDOT: PSS coating features good cyclic stability, a rapid response time, and versatile testing capabilities. This innovative structural design effectively decouples strain and temperature signals across a broad strain range (0–600 %). These sensors hold potential applications in human health monitoring and as electronic skin for flexible robotics.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 832-844"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972402589X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Avoiding crosstalk between strain and temperature detection is crucial for bimodal hydrogel sensors, yet achieving high sensitivity for both parameters while maintaining signal decoupling remains a significant challenge. In this study, a bimodal sensor was developed by locally coating poly (3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS) onto the hydrogel surface, creating distinct regions for strain and temperature detection. These regions form localized strain concentration zones and wrinkle structures, respectively. The localized strain concentration enhances the sensor’s sensitivity from 8.5 to 18.5. Additionally, the sensor demonstrates a low detection limit (0.2 %), a wide detection range (up to 1356 %), a fast response time, and excellent cyclic stability for strain measurements. The temperature detection region, leveraging the thermoelectric effect, improves the Seebeck coefficient of the PEDOT: PSS coating from 20 to 122.86 μVK−1 through de-doping and energy band modulation. Moreover, the temperature sensing of the PEDOT: PSS coating features good cyclic stability, a rapid response time, and versatile testing capabilities. This innovative structural design effectively decouples strain and temperature signals across a broad strain range (0–600 %). These sensors hold potential applications in human health monitoring and as electronic skin for flexible robotics.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies