{"title":"A second-order fitted scheme for time fractional telegraph equations involving weak singularity","authors":"Caixia Ou, Dakang Cen, Zhibo Wang, Seakweng Vong","doi":"10.1007/s13540-024-00355-4","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, to fill the gap of the effect of singularity arising from multiple fractional derivatives on numerical analysis, the regularity and high order difference scheme for time fractional telegraph equations are taken into consideration. Firstly, the analytic solution is obtained by employing Laplace transform, and its regularity is then deduced. Secondly, by the technic of decomposition, the improved regularity of solution is derived. Furthermore, to overcome the weak singularity and enhance convergence precision, a second-order fitted scheme based on <i>L</i>2-<span>\\(1_\\sigma \\)</span> approximation and order reduction method is applied to such problems, which is an improvement for the work [6]. Ultimately, examples are presented to verify the effectiveness of our theoretical results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00355-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, to fill the gap of the effect of singularity arising from multiple fractional derivatives on numerical analysis, the regularity and high order difference scheme for time fractional telegraph equations are taken into consideration. Firstly, the analytic solution is obtained by employing Laplace transform, and its regularity is then deduced. Secondly, by the technic of decomposition, the improved regularity of solution is derived. Furthermore, to overcome the weak singularity and enhance convergence precision, a second-order fitted scheme based on L2-\(1_\sigma \) approximation and order reduction method is applied to such problems, which is an improvement for the work [6]. Ultimately, examples are presented to verify the effectiveness of our theoretical results.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.