A second-order fitted scheme for time fractional telegraph equations involving weak singularity

IF 2.5 2区 数学 Q1 MATHEMATICS
Caixia Ou, Dakang Cen, Zhibo Wang, Seakweng Vong
{"title":"A second-order fitted scheme for time fractional telegraph equations involving weak singularity","authors":"Caixia Ou, Dakang Cen, Zhibo Wang, Seakweng Vong","doi":"10.1007/s13540-024-00355-4","DOIUrl":null,"url":null,"abstract":"<p>In the present paper, to fill the gap of the effect of singularity arising from multiple fractional derivatives on numerical analysis, the regularity and high order difference scheme for time fractional telegraph equations are taken into consideration. Firstly, the analytic solution is obtained by employing Laplace transform, and its regularity is then deduced. Secondly, by the technic of decomposition, the improved regularity of solution is derived. Furthermore, to overcome the weak singularity and enhance convergence precision, a second-order fitted scheme based on <i>L</i>2-<span>\\(1_\\sigma \\)</span> approximation and order reduction method is applied to such problems, which is an improvement for the work [6]. Ultimately, examples are presented to verify the effectiveness of our theoretical results.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"6 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00355-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, to fill the gap of the effect of singularity arising from multiple fractional derivatives on numerical analysis, the regularity and high order difference scheme for time fractional telegraph equations are taken into consideration. Firstly, the analytic solution is obtained by employing Laplace transform, and its regularity is then deduced. Secondly, by the technic of decomposition, the improved regularity of solution is derived. Furthermore, to overcome the weak singularity and enhance convergence precision, a second-order fitted scheme based on L2-\(1_\sigma \) approximation and order reduction method is applied to such problems, which is an improvement for the work [6]. Ultimately, examples are presented to verify the effectiveness of our theoretical results.

涉及弱奇异性的时间分数电报方程的二阶拟合方案
本文为填补多分式导数产生的奇异性对数值分析影响的空白,考虑了时间分式电报方程的正则性和高阶差分方案。首先,通过拉普拉斯变换得到解析解,并推导出其正则性。其次,通过分解技术推导出改进的正则解。此外,为了克服弱奇异性并提高收敛精度,将基于 L2-\(1_\sigma \)逼近的二阶拟合方案和降阶方法应用于此类问题,这是对前人工作的改进[6]。最后,我们通过实例验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信