Membership Inference Attacks and Defenses in Federated Learning: A Survey

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Li Bai, Haibo Hu, Qingqing Ye, Haoyang Li, Leixia Wang, Jianliang Xu
{"title":"Membership Inference Attacks and Defenses in Federated Learning: A Survey","authors":"Li Bai, Haibo Hu, Qingqing Ye, Haoyang Li, Leixia Wang, Jianliang Xu","doi":"10.1145/3704633","DOIUrl":null,"url":null,"abstract":"Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model. This enables low-resource devices to collaboratively build a high-quality model without requiring direct access to the raw training data. However, despite only sharing model updates, federated learning still faces several privacy vulnerabilities. One of the key threats is membership inference attacks, which target clients’ privacy by determining whether a specific example is part of the training set. These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system. Although there has been extensive research on membership inference attacks, a comprehensive and up-to-date survey specifically focused on it within federated learning is still absent. To fill this gap, we categorize and summarize membership inference attacks and their corresponding defense strategies based on their characteristics in this setting. We introduce a unique taxonomy of existing attack research and provide a systematic overview of various countermeasures. For these studies, we thoroughly analyze the strengths and weaknesses of different approaches. Finally, we identify and discuss key future research directions for readers interested in advancing the field.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"37 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3704633","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model. This enables low-resource devices to collaboratively build a high-quality model without requiring direct access to the raw training data. However, despite only sharing model updates, federated learning still faces several privacy vulnerabilities. One of the key threats is membership inference attacks, which target clients’ privacy by determining whether a specific example is part of the training set. These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system. Although there has been extensive research on membership inference attacks, a comprehensive and up-to-date survey specifically focused on it within federated learning is still absent. To fill this gap, we categorize and summarize membership inference attacks and their corresponding defense strategies based on their characteristics in this setting. We introduce a unique taxonomy of existing attack research and provide a systematic overview of various countermeasures. For these studies, we thoroughly analyze the strengths and weaknesses of different approaches. Finally, we identify and discuss key future research directions for readers interested in advancing the field.
联盟学习中的成员推理攻击与防御:调查
联合学习是一种去中心化的机器学习方法,客户端在本地训练模型,并共享模型更新,以开发一个全局模型。这使低资源设备能够协作建立高质量模型,而无需直接访问原始训练数据。然而,尽管只共享模型更新,联合学习仍然面临着几个隐私漏洞。其中一个主要威胁是成员推理攻击,这种攻击通过确定特定示例是否属于训练集的一部分来攻击客户的隐私。这些攻击会破坏真实世界应用中的敏感信息,例如医疗保健系统中的医疗诊断。尽管对成员推断攻击已有大量研究,但专门针对联合学习中的成员推断攻击的全面、最新调查报告仍然缺失。为了填补这一空白,我们根据成员推断攻击在此环境中的特点,对其进行了分类和总结,并提出了相应的防御策略。我们对现有的攻击研究进行了独特的分类,并对各种对策进行了系统的概述。针对这些研究,我们深入分析了不同方法的优缺点。最后,我们为有志于推动该领域发展的读者指出并讨论了未来的主要研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信