{"title":"Breaking the power-of-two barrier: noise estimation for BGV in NTT-friendly rings","authors":"Andrea Di Giusto, Chiara Marcolla","doi":"10.1007/s10623-024-01524-5","DOIUrl":null,"url":null,"abstract":"<p>The Brakerski–Gentry–Vaikuntanathan (BGV) scheme is a Fully Homomorphic Encryption (FHE) cryptosystem based on the Ring Learning With Error (RLWE) problem. Ciphertexts in this scheme contain an error term that grows with operations and causes decryption failure when it surpasses a certain threshold. Consequently, the parameters of BGV need to be estimated carefully, with a trade-off between security and error margin. The ciphertext space of BGV is the ring <span>\\(\\mathcal {R}_q=\\mathbb {Z}_q[x]/(\\Phi _m(x))\\)</span>, where usually the degree <i>n</i> of the cyclotomic polynomial <span>\\(\\Phi _m(x)\\)</span> is chosen as a power of two for efficiency reasons. However, the jump between two consecutive powers-of-two polynomials also causes a jump in security, resulting in parameters that are much bigger than what is needed. In this work, we explore the non-power-of-two instantiations of BGV. Although our theoretical research encompasses results applicable to any cyclotomic ring, the focus of our investigation is the case of <span>\\({m=2^s\\cdot 3^t}\\)</span> where <span>\\(s,t\\ge 1\\)</span>, i.e., cyclotomic polynomials with degree <span>\\({n=\\phi (m)=2^s\\cdot 3^{t-1}}\\)</span>. We provide a thorough analysis of the noise growth in this new setting using the canonical norm and compare our results with the power-of-two case considering practical aspects like NTT algorithms. We find that in many instances, the parameter estimation process yields better results for the non-power-of-two setting.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01524-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Brakerski–Gentry–Vaikuntanathan (BGV) scheme is a Fully Homomorphic Encryption (FHE) cryptosystem based on the Ring Learning With Error (RLWE) problem. Ciphertexts in this scheme contain an error term that grows with operations and causes decryption failure when it surpasses a certain threshold. Consequently, the parameters of BGV need to be estimated carefully, with a trade-off between security and error margin. The ciphertext space of BGV is the ring \(\mathcal {R}_q=\mathbb {Z}_q[x]/(\Phi _m(x))\), where usually the degree n of the cyclotomic polynomial \(\Phi _m(x)\) is chosen as a power of two for efficiency reasons. However, the jump between two consecutive powers-of-two polynomials also causes a jump in security, resulting in parameters that are much bigger than what is needed. In this work, we explore the non-power-of-two instantiations of BGV. Although our theoretical research encompasses results applicable to any cyclotomic ring, the focus of our investigation is the case of \({m=2^s\cdot 3^t}\) where \(s,t\ge 1\), i.e., cyclotomic polynomials with degree \({n=\phi (m)=2^s\cdot 3^{t-1}}\). We provide a thorough analysis of the noise growth in this new setting using the canonical norm and compare our results with the power-of-two case considering practical aspects like NTT algorithms. We find that in many instances, the parameter estimation process yields better results for the non-power-of-two setting.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.