Ground states of fermionic nonlinear Schrödinger systems with Coulomb potential I: the \(L^2\)-subcritical case

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Bin Chen, Yujin Guo
{"title":"Ground states of fermionic nonlinear Schrödinger systems with Coulomb potential I: the \\(L^2\\)-subcritical case","authors":"Bin Chen,&nbsp;Yujin Guo","doi":"10.1007/s11005-024-01877-x","DOIUrl":null,"url":null,"abstract":"<div><p>We consider ground states of the <i>N</i> coupled fermionic nonlinear Schrödinger systems with the Coulomb potential <i>V</i>(<i>x</i>) in the <span>\\(L^2\\)</span>-subcritical case. By studying the associated constraint variational problem, we prove the existence of ground states for the system with any parameter <span>\\(\\alpha &gt;0\\)</span>, which represents the attractive strength of the non-relativistic quantum particles. The limiting behavior of ground states for the system is also analyzed as <span>\\(\\alpha \\rightarrow \\infty \\)</span>, where the mass concentrates at one of the singular points for the Coulomb potential <i>V</i>(<i>x</i>).\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01877-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider ground states of the N coupled fermionic nonlinear Schrödinger systems with the Coulomb potential V(x) in the \(L^2\)-subcritical case. By studying the associated constraint variational problem, we prove the existence of ground states for the system with any parameter \(\alpha >0\), which represents the attractive strength of the non-relativistic quantum particles. The limiting behavior of ground states for the system is also analyzed as \(\alpha \rightarrow \infty \), where the mass concentrates at one of the singular points for the Coulomb potential V(x).

具有库仑势的费米子非线性薛定谔系统的基态 I:\(L^2\)-次临界情况
我们考虑了在\(L^2\)-次临界情况下具有库仑势V(x)的N个耦合费米子非线性薛定谔系统的基态。通过研究相关的约束变分问题,我们证明了任意参数(\α >0\)下系统基态的存在,该参数代表了非相对论量子粒子的吸引力强度。我们还分析了该系统基态的极限行为(\(\alpha \rightarrow \infty \),其中质量集中在库仑势 V(x) 的奇异点之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信