Nikitasha Chatterjee, Anil K. Gupta, Sameer K. Tiwari, Kuppusamy Mohan, Kanishak Sharma
{"title":"Quantification of Post-monsoon CO2 Degassing Flux from the Headwaters of the Ganga River: Emphasis on Weathering Pattern of the Basin","authors":"Nikitasha Chatterjee, Anil K. Gupta, Sameer K. Tiwari, Kuppusamy Mohan, Kanishak Sharma","doi":"10.1007/s10498-024-09434-7","DOIUrl":null,"url":null,"abstract":"<div><p>Research on the carbon-cycling process in high-altitude streams is crucial for understanding whether carbon acts as a source or sink for the atmosphere during present times of global climate change. In this study, we have quantified the post-monsoon CO<sub>2</sub> flux (FCO<sub>2</sub>) from the Bhagirathi and Alaknanda rivers, which are two pristine watersheds in the Upper Ganga Basin in India with the help of analytical hydrochemistry and PHREEQC v.3.7.3 software. Our results show FCO<sub>2</sub> values of 88 gCO<sub>2</sub>m⁻<sup>2</sup>d⁻<sup>1</sup> and 175 gCO<sub>2</sub>m⁻<sup>2</sup>d⁻<sup>1</sup> from the upstream reaches of Bhagirathi and Alaknanda Rivers, respectively, which is significantly greater than the fluxes observed in the downstream reaches (18 gCO<sub>2</sub>m⁻<sup>2</sup>d⁻<sup>1</sup> and 4.1 gCO<sub>2</sub>m⁻<sup>2</sup>d⁻<sup>1</sup>, respectively). This difference in FCO<sub>2</sub> is attributed to the major variation in gas transfer velocity (kCO₂) along elevation, with the upstream section exhibiting approximately eight times higher kCO<sub>2</sub> than the downstream section. The steeper bed slope leads to increased turbulence and energy dissipation at higher altitudes, enhancing the kCO<sub>2</sub> values. The partial pressure of CO<sub>2</sub> in the rivers was found to be approximately 2.5 times greater than the atmosphere. Our findings suggest that form-drag turbulence instead of bed friction, prevalent in the high-gradient reaches of the rivers, is the main driver of CO<sub>2</sub> degassing into the atmosphere. This study shows that Ganga headwater streams are sources of CO<sub>2</sub> to the atmosphere and underscores the need for monitoring other Himalayan streams for CO<sub>2</sub> flux.</p></div>","PeriodicalId":8102,"journal":{"name":"Aquatic Geochemistry","volume":"30 4","pages":"287 - 315"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10498-024-09434-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the carbon-cycling process in high-altitude streams is crucial for understanding whether carbon acts as a source or sink for the atmosphere during present times of global climate change. In this study, we have quantified the post-monsoon CO2 flux (FCO2) from the Bhagirathi and Alaknanda rivers, which are two pristine watersheds in the Upper Ganga Basin in India with the help of analytical hydrochemistry and PHREEQC v.3.7.3 software. Our results show FCO2 values of 88 gCO2m⁻2d⁻1 and 175 gCO2m⁻2d⁻1 from the upstream reaches of Bhagirathi and Alaknanda Rivers, respectively, which is significantly greater than the fluxes observed in the downstream reaches (18 gCO2m⁻2d⁻1 and 4.1 gCO2m⁻2d⁻1, respectively). This difference in FCO2 is attributed to the major variation in gas transfer velocity (kCO₂) along elevation, with the upstream section exhibiting approximately eight times higher kCO2 than the downstream section. The steeper bed slope leads to increased turbulence and energy dissipation at higher altitudes, enhancing the kCO2 values. The partial pressure of CO2 in the rivers was found to be approximately 2.5 times greater than the atmosphere. Our findings suggest that form-drag turbulence instead of bed friction, prevalent in the high-gradient reaches of the rivers, is the main driver of CO2 degassing into the atmosphere. This study shows that Ganga headwater streams are sources of CO2 to the atmosphere and underscores the need for monitoring other Himalayan streams for CO2 flux.
期刊介绍:
We publish original studies relating to the geochemistry of natural waters and their interactions with rocks and minerals under near Earth-surface conditions. Coverage includes theoretical, experimental, and modeling papers dealing with this subject area, as well as papers presenting observations of natural systems that stress major processes. The journal also presents `letter''-type papers for rapid publication and a limited number of review-type papers on topics of particularly broad interest or current major controversy.