Stabilization of the Coleman-Gurtin thermal coupling with swelling porous system: general decay rate

Q2 Mathematics
Adel M. Al-Mahdi, Tijani A. Apalara, Mohammad Al-Gharabli, Salim Messaoudi
{"title":"Stabilization of the Coleman-Gurtin thermal coupling with swelling porous system: general decay rate","authors":"Adel M. Al-Mahdi,&nbsp;Tijani A. Apalara,&nbsp;Mohammad Al-Gharabli,&nbsp;Salim Messaoudi","doi":"10.1007/s11565-024-00560-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a thermoelastic swelling system with Coleman-Gurtin’s law, when the heat flux <i>q</i> is given by </p><div><div><span>$$\\begin{aligned} \\tau q(t)+(1-\\alpha )\\theta _{x}+\\alpha \\int _{0}^{\\infty } \\Psi (s)\\theta _{x}(x, t-s)ds=0,\\qquad \\alpha \\in (0, 1), \\end{aligned}$$</span></div></div><p>where <span>\\(\\theta \\)</span> is the temperature supposed to be known for negative times. <span>\\(\\Psi \\)</span> is the convolution thermal kernel, a nonnegative bounded convex function on <span>\\([0, + \\infty )\\)</span> belongs to a broad class of relaxation functions satisfying the unitary total mass, and some additional properties that will be specified later. By using the Dafermos history framework and constructing a suitable Lyapunov functional, we established a general decay result, from which the exponential and polynomial decay rates are only special cases. The stability result in this manuscript is obtained without imposing any stability number, and extends and improves many earlier results in the literature.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00560-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with a thermoelastic swelling system with Coleman-Gurtin’s law, when the heat flux q is given by

$$\begin{aligned} \tau q(t)+(1-\alpha )\theta _{x}+\alpha \int _{0}^{\infty } \Psi (s)\theta _{x}(x, t-s)ds=0,\qquad \alpha \in (0, 1), \end{aligned}$$

where \(\theta \) is the temperature supposed to be known for negative times. \(\Psi \) is the convolution thermal kernel, a nonnegative bounded convex function on \([0, + \infty )\) belongs to a broad class of relaxation functions satisfying the unitary total mass, and some additional properties that will be specified later. By using the Dafermos history framework and constructing a suitable Lyapunov functional, we established a general decay result, from which the exponential and polynomial decay rates are only special cases. The stability result in this manuscript is obtained without imposing any stability number, and extends and improves many earlier results in the literature.

科尔曼-古尔廷热耦合与膨胀多孔系统的稳定:一般衰减率
本文关注的是具有 Coleman-Gurtin 定律的热弹性膨胀系统,此时热通量 q 由 $$\begin{aligned} 给出。\tau q(t)+(1-\alpha )\theta _{x}+\alpha \int _{0}^{infty }\Psi (s)\theta _{x}(x, t-s)ds=0,\qquad \alpha \in (0, 1), \end{aligned}$ 其中\(\theta \)是已知负时间的温度。\(\Psi \)是卷积热核,是\([0, + \infty )\)上的一个非负有界凸函数,属于满足单位总质量的松弛函数大类,还有一些其他性质将在后面具体说明。通过使用 Dafermos 历史框架和构造合适的 Lyapunov 函数,我们建立了一个一般衰变结果,指数衰变率和多项式衰变率只是其中的特例。本手稿中的稳定性结果是在不施加任何稳定性数的情况下获得的,它扩展并改进了许多早期文献中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信