{"title":"Comparison Queries Generation Using Mathematical Programming for Exploratory Data Analysis","authors":"Alexandre Chanson;Nicolas Labroche;Patrick Marcel;Vincent T'Kindt","doi":"10.1109/TKDE.2024.3474828","DOIUrl":null,"url":null,"abstract":"Exploratory Data Analysis (EDA) is the interactive process of gaining insights from a dataset. Comparisons are popular insights that can be specified with comparison queries, i.e., specifications of the comparison of subsets of data. In this work, we consider the problem of automatically computing sequences of comparison queries that are coherent, significant and whose overall cost is bounded. Such an automation is usually done by either generating all insights and solving a multi-criteria optimization problem, or using reinforcement learning. In the first case, a large search space has to be explored using exponential algorithms or dedicated heuristics. In the second case, a dataset-specific, time and energy-consuming training, is necessary. We contribute with a novel approach, consisting of decomposing the optimization problem in two: the original problem, that is solved over a smaller search space, and a new problem of generating comparison queries, aiming at generating only queries improving existing solutions of the first problem. This allows to explore only a portion of the search space, without resorting to reinforcement learning. We show that this approach is effective, in that it finds good solutions to the original multi-criteria optimization problem, and efficient, allowing to generate sequences of comparisons in reasonable time.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7792-7804"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705999/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Exploratory Data Analysis (EDA) is the interactive process of gaining insights from a dataset. Comparisons are popular insights that can be specified with comparison queries, i.e., specifications of the comparison of subsets of data. In this work, we consider the problem of automatically computing sequences of comparison queries that are coherent, significant and whose overall cost is bounded. Such an automation is usually done by either generating all insights and solving a multi-criteria optimization problem, or using reinforcement learning. In the first case, a large search space has to be explored using exponential algorithms or dedicated heuristics. In the second case, a dataset-specific, time and energy-consuming training, is necessary. We contribute with a novel approach, consisting of decomposing the optimization problem in two: the original problem, that is solved over a smaller search space, and a new problem of generating comparison queries, aiming at generating only queries improving existing solutions of the first problem. This allows to explore only a portion of the search space, without resorting to reinforcement learning. We show that this approach is effective, in that it finds good solutions to the original multi-criteria optimization problem, and efficient, allowing to generate sequences of comparisons in reasonable time.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.