{"title":"Generation of Seismocardiography Heartbeats Using a Wasserstein Generative Adversarial Network With Feature Control","authors":"James Skoric;Yannick D'Mello;David V. Plant","doi":"10.1109/OJEMB.2024.3485535","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n Seismocardiography (SCG) offers critical insights into cardiac performance, but its analysis often faces challenges due to the limited availability of data. This study aims to generate synthetic SCG heartbeats which can augment existing datasets to enable more research avenues. \n<italic>Methods</i>\n: We trained a Wasserstein generative adversarial network (GAN) with gradient penalty on authentic SCG heartbeats. It was conditioned with embedded subject-specific identifiers to create individualized heartbeats. We employed linear permutations in the latent and conditional spaces to control signal features, and a convolutional network to classify lung volume states from real and synthetic data separately. \n<italic>Results</i>\n: The model effectively replicated SCG signal morphology, while maintaining a level of variance which matches the variability of cardiac activity. Comparisons with real SCG waveforms yielded Pearson's r-squared correlation of 0.62 for average heartbeats. Linear manipulations were successful in controlling simple features although they were limited in more complex characteristics. Additionally, the model demonstrated strong performance in practical applications, with the synthetic data achieving an accuracy of 88% in lung volume classification as compared to 89% achieved with real data. Augmenting real data with additional synthetic data improved performance by 3%. \n<italic>Conclusions</i>\n: GANs for artificial SCG heartbeat generation produce realistic and diverse results that have the potential to overcome data limitations, thereby enhancing SCG-based research.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"119-126"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731564","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10731564/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal:
Seismocardiography (SCG) offers critical insights into cardiac performance, but its analysis often faces challenges due to the limited availability of data. This study aims to generate synthetic SCG heartbeats which can augment existing datasets to enable more research avenues.
Methods
: We trained a Wasserstein generative adversarial network (GAN) with gradient penalty on authentic SCG heartbeats. It was conditioned with embedded subject-specific identifiers to create individualized heartbeats. We employed linear permutations in the latent and conditional spaces to control signal features, and a convolutional network to classify lung volume states from real and synthetic data separately.
Results
: The model effectively replicated SCG signal morphology, while maintaining a level of variance which matches the variability of cardiac activity. Comparisons with real SCG waveforms yielded Pearson's r-squared correlation of 0.62 for average heartbeats. Linear manipulations were successful in controlling simple features although they were limited in more complex characteristics. Additionally, the model demonstrated strong performance in practical applications, with the synthetic data achieving an accuracy of 88% in lung volume classification as compared to 89% achieved with real data. Augmenting real data with additional synthetic data improved performance by 3%.
Conclusions
: GANs for artificial SCG heartbeat generation produce realistic and diverse results that have the potential to overcome data limitations, thereby enhancing SCG-based research.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.