Yan Lin;Huaiyu Wan;Shengnan Guo;Jilin Hu;Christian S. Jensen;Youfang Lin
{"title":"Pre-Training General Trajectory Embeddings With Maximum Multi-View Entropy Coding","authors":"Yan Lin;Huaiyu Wan;Shengnan Guo;Jilin Hu;Christian S. Jensen;Youfang Lin","doi":"10.1109/TKDE.2023.3347513","DOIUrl":null,"url":null,"abstract":"Spatio-temporal trajectories provide valuable information about movement and travel behavior, enabling various downstream tasks that in turn power real-world applications. Learning trajectory embeddings can improve task performance but may incur high computational costs and face limited training data availability. Pre-training learns generic embeddings by means of specially constructed pretext tasks that enable learning from unlabeled data. Existing pre-training methods face (i) difficulties in learning general embeddings due to biases towards certain downstream tasks incurred by the pretext tasks, (ii) limitations in capturing both travel semantics and spatio-temporal correlations, and (iii) the complexity of long, irregularly sampled trajectories. To tackle these challenges, we propose Maximum Multi-view Trajectory Entropy Coding (MMTEC) for learning general and comprehensive trajectory embeddings. We introduce a pretext task that reduces biases in pre-trained trajectory embeddings, yielding embeddings that are useful for a wide variety of downstream tasks. We also propose an attention-based discrete encoder and a NeuralCDE-based continuous encoder that extract and represent travel behavior and continuous spatio-temporal correlations from trajectories in embeddings, respectively. Extensive experiments on two real-world datasets and three downstream tasks offer insight into the design properties of our proposal and indicate that it is capable of outperforming existing trajectory embedding methods.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9037-9050"},"PeriodicalIF":8.9000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10375102/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spatio-temporal trajectories provide valuable information about movement and travel behavior, enabling various downstream tasks that in turn power real-world applications. Learning trajectory embeddings can improve task performance but may incur high computational costs and face limited training data availability. Pre-training learns generic embeddings by means of specially constructed pretext tasks that enable learning from unlabeled data. Existing pre-training methods face (i) difficulties in learning general embeddings due to biases towards certain downstream tasks incurred by the pretext tasks, (ii) limitations in capturing both travel semantics and spatio-temporal correlations, and (iii) the complexity of long, irregularly sampled trajectories. To tackle these challenges, we propose Maximum Multi-view Trajectory Entropy Coding (MMTEC) for learning general and comprehensive trajectory embeddings. We introduce a pretext task that reduces biases in pre-trained trajectory embeddings, yielding embeddings that are useful for a wide variety of downstream tasks. We also propose an attention-based discrete encoder and a NeuralCDE-based continuous encoder that extract and represent travel behavior and continuous spatio-temporal correlations from trajectories in embeddings, respectively. Extensive experiments on two real-world datasets and three downstream tasks offer insight into the design properties of our proposal and indicate that it is capable of outperforming existing trajectory embedding methods.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.