Adjusting Detectable Velocity Range in FMCW Radar Systems Through Selective Sampling

Seungheon Kwak;Dahyun Jeon;Seongwook Lee
{"title":"Adjusting Detectable Velocity Range in FMCW Radar Systems Through Selective Sampling","authors":"Seungheon Kwak;Dahyun Jeon;Seongwook Lee","doi":"10.1109/JSAS.2024.3479110","DOIUrl":null,"url":null,"abstract":"In a frequency-modulated continuous wave (FMCW) radar system, a series of waveforms with frequencies that increase linearly over time is transmitted. Once the transmitted signal reaches the target and returns, sampling is applied to the received signal, followed by the Fourier transform for distance and velocity estimation. In general, the detectable velocity range depends on the duration of a single waveform in the FMCW radar systems. If the target moves at a velocity that exceeds the detectable velocity of the radar, accurate velocity estimation is impossible due to Doppler ambiguity. Therefore, in this article, we propose a method for adjusting the detectable velocity range using a selective sampling method. In the proposed method, velocity ambiguity can be resolved by dual processing the samples obtained along the time axis at different rates. When the proposed method is applied to targets beyond the detectable velocity range of a conventional FMCW radar system, it effectively resolves Doppler ambiguity, enabling efficient velocity estimation. Our method has been verified to be well-applicable to data obtained from both simulation and real-world measurements. The comparison of the estimated velocity using our method with the ground truth in real-world measurements indicates an error of 0.07 m/s. We expect our proposed method to contribute to resolving the issue of velocity estimation ambiguity in the FMCW radar systems.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"249-260"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715571","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10715571/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a frequency-modulated continuous wave (FMCW) radar system, a series of waveforms with frequencies that increase linearly over time is transmitted. Once the transmitted signal reaches the target and returns, sampling is applied to the received signal, followed by the Fourier transform for distance and velocity estimation. In general, the detectable velocity range depends on the duration of a single waveform in the FMCW radar systems. If the target moves at a velocity that exceeds the detectable velocity of the radar, accurate velocity estimation is impossible due to Doppler ambiguity. Therefore, in this article, we propose a method for adjusting the detectable velocity range using a selective sampling method. In the proposed method, velocity ambiguity can be resolved by dual processing the samples obtained along the time axis at different rates. When the proposed method is applied to targets beyond the detectable velocity range of a conventional FMCW radar system, it effectively resolves Doppler ambiguity, enabling efficient velocity estimation. Our method has been verified to be well-applicable to data obtained from both simulation and real-world measurements. The comparison of the estimated velocity using our method with the ground truth in real-world measurements indicates an error of 0.07 m/s. We expect our proposed method to contribute to resolving the issue of velocity estimation ambiguity in the FMCW radar systems.
通过选择性采样调整 FMCW 雷达系统的可探测速度范围
在频率调制连续波(FMCW)雷达系统中,发射一系列频率随时间线性增加的波形。一旦发射的信号到达目标并返回,就会对接收到的信号进行采样,然后进行傅里叶变换,以估算距离和速度。一般来说,在 FMCW 雷达系统中,可探测的速度范围取决于单个波形的持续时间。如果目标的移动速度超过雷达的可探测速度,那么由于多普勒模糊性,就无法进行准确的速度估计。因此,本文提出了一种利用选择性采样方法调整可探测速度范围的方法。在所提出的方法中,通过对沿时间轴以不同速率获得的样本进行双重处理,可以解决速度模糊问题。当提议的方法应用于超出传统 FMCW 雷达系统可探测速度范围的目标时,它能有效地解决多普勒模糊性问题,从而实现高效的速度估计。我们的方法已在模拟和实际测量数据中得到验证。使用我们的方法估算出的速度与实际测量中的地面实况相比,误差为 0.07 m/s。我们希望我们提出的方法能有助于解决 FMCW 雷达系统中速度估计模糊的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信