LiDAR-Guided Stereo Matching Using Bayesian Optimization With Gaussian Process Regression

Hao Yi;Bo Liu;Bin Zhao;Enhai Liu
{"title":"LiDAR-Guided Stereo Matching Using Bayesian Optimization With Gaussian Process Regression","authors":"Hao Yi;Bo Liu;Bin Zhao;Enhai Liu","doi":"10.1109/LGRS.2024.3492175","DOIUrl":null,"url":null,"abstract":"LiDAR-guided stereo matching for high-precision disparity estimation is a very promising task in photogrammetry and remote sensing. Unfortunately, existing methods suffer from the problem that it is difficult to automatically obtain appropriate stereo matching model parameters to ensure satisfactory results. To solve it, this letter proposes a LiDAR-guided stereo matching framework using Bayesian optimization with Gaussian process regression, which aims to automatically infer the stereo matching model parameters by LiDAR data. First, local matching model based on the belief propagation algorithm is designed. Second, the objective function is constructed by minimizing the difference between the local matching results and the LiDAR data. Third, Bayesian optimization with Gaussian process regression is applied to minimize this objective function to infer the model parameters. Finally, experimental results on the GaoFen-7 and UAV Stereo datasets show that the proposed method can effectively infer suitable model parameters from LiDAR data, and our method outperforms the state-of-the-art methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"21 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10745558/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

LiDAR-guided stereo matching for high-precision disparity estimation is a very promising task in photogrammetry and remote sensing. Unfortunately, existing methods suffer from the problem that it is difficult to automatically obtain appropriate stereo matching model parameters to ensure satisfactory results. To solve it, this letter proposes a LiDAR-guided stereo matching framework using Bayesian optimization with Gaussian process regression, which aims to automatically infer the stereo matching model parameters by LiDAR data. First, local matching model based on the belief propagation algorithm is designed. Second, the objective function is constructed by minimizing the difference between the local matching results and the LiDAR data. Third, Bayesian optimization with Gaussian process regression is applied to minimize this objective function to infer the model parameters. Finally, experimental results on the GaoFen-7 and UAV Stereo datasets show that the proposed method can effectively infer suitable model parameters from LiDAR data, and our method outperforms the state-of-the-art methods.
利用贝叶斯优化和高斯过程回归进行激光雷达引导的立体匹配
利用激光雷达引导的立体匹配进行高精度差异估计是摄影测量和遥感领域一项非常有前景的任务。遗憾的是,现有方法存在一个问题,即很难自动获取适当的立体匹配模型参数,以确保获得令人满意的结果。为解决这一问题,本文提出了一种利用贝叶斯优化与高斯过程回归的激光雷达引导的立体匹配框架,旨在通过激光雷达数据自动推断立体匹配模型参数。首先,设计基于信念传播算法的局部匹配模型。其次,通过最小化局部匹配结果与激光雷达数据之间的差异来构建目标函数。第三,应用贝叶斯优化和高斯过程回归来最小化该目标函数,从而推断出模型参数。最后,在高分七号和无人机立体数据集上的实验结果表明,所提出的方法能有效地从激光雷达数据中推断出合适的模型参数,而且我们的方法优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信