Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions.

Hong Xu, Shireen Y Elhabian
{"title":"Image2SSM: Reimagining Statistical Shape Models from Images with Radial Basis Functions.","authors":"Hong Xu, Shireen Y Elhabian","doi":"10.1007/978-3-031-43907-0_49","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical shape modeling (SSM) is an essential tool for analyzing variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical images, gone through segmentation and rigid registration, are represented using lower-dimensional shape features, on which statistical analysis can be performed. Various methods for constructing compact shape representations have been proposed, but they involve laborious and costly steps. We propose Image2SSM, a novel deep-learning-based approach for SSM that leverages image-segmentation pairs to learn a radial-basis-function (RBF)-based representation of shapes directly from images. This RBF-based shape representation offers a rich self-supervised signal for the network to estimate a continuous, yet compact representation of the underlying surface that can adapt to complex geometries in a data-driven manner. Image2SSM can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes while requiring minimal parameter tuning and no user assistance. Once trained, Image2SSM can be used to infer low-dimensional shape representations from new unsegmented images, paving the way toward scalable approaches for SSM, especially when dealing with large cohorts. Experiments on synthetic and real datasets show the efficacy of the proposed method compared to the state-of-art correspondence-based method for SSM.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"14220 ","pages":"508-517"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43907-0_49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical shape modeling (SSM) is an essential tool for analyzing variations in anatomical morphology. In a typical SSM pipeline, 3D anatomical images, gone through segmentation and rigid registration, are represented using lower-dimensional shape features, on which statistical analysis can be performed. Various methods for constructing compact shape representations have been proposed, but they involve laborious and costly steps. We propose Image2SSM, a novel deep-learning-based approach for SSM that leverages image-segmentation pairs to learn a radial-basis-function (RBF)-based representation of shapes directly from images. This RBF-based shape representation offers a rich self-supervised signal for the network to estimate a continuous, yet compact representation of the underlying surface that can adapt to complex geometries in a data-driven manner. Image2SSM can characterize populations of biological structures of interest by constructing statistical landmark-based shape models of ensembles of anatomical shapes while requiring minimal parameter tuning and no user assistance. Once trained, Image2SSM can be used to infer low-dimensional shape representations from new unsegmented images, paving the way toward scalable approaches for SSM, especially when dealing with large cohorts. Experiments on synthetic and real datasets show the efficacy of the proposed method compared to the state-of-art correspondence-based method for SSM.

Image2SSM:利用径向基函数从图像中重塑统计形状模型。
统计形状建模(SSM)是分析解剖形态变化的重要工具。在典型的统计形状建模流程中,三维解剖图像经过分割和刚性配准后,使用低维形状特征来表示,并在此基础上进行统计分析。目前已提出了多种构建紧凑形状表示的方法,但这些方法都涉及费力且昂贵的步骤。我们提出的 Image2SSM 是一种基于深度学习的新型 SSM 方法,它利用图像分割对直接从图像中学习基于径向基函数(RBF)的形状表示。这种基于 RBF 的形状表示法为网络提供了丰富的自监督信号,以估计底层表面的连续而紧凑的表示法,并能以数据驱动的方式适应复杂的几何形状。Image2SSM 可以通过构建解剖形状集合的基于统计地标的形状模型来描述感兴趣的生物结构群,同时只需极少的参数调整,无需用户协助。训练完成后,Image2SSM 可用于从新的未分割图像中推断低维形状表示,为 SSM 的可扩展方法铺平道路,尤其是在处理大型队列时。在合成和真实数据集上的实验表明,与基于对应关系的 SSM 方法相比,所提出的方法非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信