Visualization-Driven Illumination for Density Plots.

Xin Chen, Yunhai Wang, Huaiwei Bao, Kecheng Lu, Jaemin Jo, Chi-Wing Fu, Jean-Daniel Fekete
{"title":"Visualization-Driven Illumination for Density Plots.","authors":"Xin Chen, Yunhai Wang, Huaiwei Bao, Kecheng Lu, Jaemin Jo, Chi-Wing Fu, Jean-Daniel Fekete","doi":"10.1109/TVCG.2024.3495695","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel visualization-driven illumination model for density plots, a new technique to enhance density plots by effectively revealing the detailed structures in high- and medium-density regions and outliers in low-density regions, while avoiding artifacts in the density field's colors. When visualizing large and dense discrete point samples, scatterplots and dot density maps often suffer from overplotting, and density plots are commonly employed to provide aggregated views while revealing underlying structures. Yet, in such density plots, existing illumination models may produce color distortion and hide details in low-density regions, making it challenging to look up density values, compare them, and find outliers. The key novelty in this work includes (i) a visualization-driven illumination model that inherently supports density-plot-specific analysis tasks and (ii) a new image composition technique to reduce the interference between the image shading and the color-encoded density values. To demonstrate the effectiveness of our technique, we conducted a quantitative study, an empirical evaluation of our technique in a controlled study, and two case studies, exploring twelve datasets with up to two million data point samples.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2024.3495695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel visualization-driven illumination model for density plots, a new technique to enhance density plots by effectively revealing the detailed structures in high- and medium-density regions and outliers in low-density regions, while avoiding artifacts in the density field's colors. When visualizing large and dense discrete point samples, scatterplots and dot density maps often suffer from overplotting, and density plots are commonly employed to provide aggregated views while revealing underlying structures. Yet, in such density plots, existing illumination models may produce color distortion and hide details in low-density regions, making it challenging to look up density values, compare them, and find outliers. The key novelty in this work includes (i) a visualization-driven illumination model that inherently supports density-plot-specific analysis tasks and (ii) a new image composition technique to reduce the interference between the image shading and the color-encoded density values. To demonstrate the effectiveness of our technique, we conducted a quantitative study, an empirical evaluation of our technique in a controlled study, and two case studies, exploring twelve datasets with up to two million data point samples.

可视化驱动的密度图照明。
我们为密度图提出了一种新颖的可视化驱动光照模型,这是一种增强密度图的新技术,它能有效揭示高密度和中等密度区域的细节结构以及低密度区域的异常值,同时避免密度场的颜色出现假象。在可视化大型高密度离散点样本时,散点图和点密度图往往会出现过度绘制的问题,而密度图通常用于提供聚合视图,同时揭示底层结构。然而,在这类密度图中,现有的光照模型可能会产生色彩失真,掩盖低密度区域的细节,从而使查找密度值、比较密度值和发现异常值变得十分困难。这项工作的主要创新点包括:(i) 一种可视化驱动的照明模型,该模型本质上支持密度图特定的分析任务;(ii) 一种新的图像合成技术,可减少图像阴影和彩色编码密度值之间的干扰。为了证明我们技术的有效性,我们进行了一项定量研究、一项对照研究中的经验评估以及两项案例研究,探索了多达 200 万个数据点样本的 12 个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信