p-IgGen: a paired antibody generative language model.

Oliver M Turnbull, Dino Oglic, Rebecca Croasdale-Wood, Charlotte M Deane
{"title":"p-IgGen: a paired antibody generative language model.","authors":"Oliver M Turnbull, Dino Oglic, Rebecca Croasdale-Wood, Charlotte M Deane","doi":"10.1093/bioinformatics/btae659","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>A key challenge in antibody drug discovery is designing novel sequences that are free from developability issues-such as aggregation, polyspecificity, poor expression, or low solubility. Here, we present p-IgGen, a protein language model for paired heavy-light chain antibody generation. The model generates diverse, antibody-like sequences with pairing properties found in natural antibodies. We also create a finetuned version of p-IgGen that biases the model to generate antibodies with 3D biophysical properties that fall within distributions seen in clinical-stage therapeutic antibodies.</p><p><strong>Availability and implementation: </strong>The model and inference code are freely available at www.github.com/oxpig/p-IgGen. Cleaned training data are deposited at doi.org/10.5281/zenodo.13880874.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: A key challenge in antibody drug discovery is designing novel sequences that are free from developability issues-such as aggregation, polyspecificity, poor expression, or low solubility. Here, we present p-IgGen, a protein language model for paired heavy-light chain antibody generation. The model generates diverse, antibody-like sequences with pairing properties found in natural antibodies. We also create a finetuned version of p-IgGen that biases the model to generate antibodies with 3D biophysical properties that fall within distributions seen in clinical-stage therapeutic antibodies.

Availability and implementation: The model and inference code are freely available at www.github.com/oxpig/p-IgGen. Cleaned training data are deposited at doi.org/10.5281/zenodo.13880874.

p-IgGen:成对抗体生成语言模型
摘要:抗体药物发现的一个关键挑战是设计出没有可开发性问题(如聚集、多特异性、表达能力差或溶解度低)的新型序列。在这里,我们介绍一种用于生成成对重链-轻链抗体的蛋白质语言模型 p-IgGen。该模型能生成具有天然抗体配对特性的多样化抗体样序列。我们还创建了一个经过微调的 p-IgGen 版本,该版本偏向于生成具有三维生物物理特性的抗体,这些特性在临床阶段的治疗性抗体中可以看到:模型和推理代码可在 www.github.com/oxpig/p-IgGen 免费获取。经过清理的训练数据存放在 doi.org/10.5281/zenodo.13880874。补充信息:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信