{"title":"A PRKN-independent mechanism regulating cardiac mitochondrial quality control.","authors":"Wenjuan Wang, Jinbao Liu, Jie Li, Huabo Su","doi":"10.1080/15548627.2024.2423329","DOIUrl":null,"url":null,"abstract":"<p><p>PRKN-dependent mitophagy plays a crucial role in maintaining mitochondrial health. Yet, PRKN-deficient mice do not exhibit mitochondrial and cardiac phenotypes at baseline, suggesting the existence of other mitochondrial ubiquitin (Ub) ligases. Here, we discuss our recent work identifying RNF7/RBX2 as a novel mitochondrial Ub ligase. Upon mitochondrial depolarization, RNF7 proteins are recruited to the mitochondria, where they directly ubiquitinate mitochondrial proteins and stabilize PINK1 expression, thereby promoting the clearance of damaged mitochondria and regulating mitochondrial turnover in the heart. The actions of RNF7 in mitochondria do not require PRKN. Ablation of <i>Rnf7</i> in mouse hearts results in severe mitochondrial dysfunction and heart failure. Our findings demonstrate that RNF7 is indispensable for mitochondrial turnover and cardiac homeostasis. These results open new avenues for exploring new PRKN-independent pathways that regulate mitophagy, which could have significant implications for developing therapeutic interventions for cardiac diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2423329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PRKN-dependent mitophagy plays a crucial role in maintaining mitochondrial health. Yet, PRKN-deficient mice do not exhibit mitochondrial and cardiac phenotypes at baseline, suggesting the existence of other mitochondrial ubiquitin (Ub) ligases. Here, we discuss our recent work identifying RNF7/RBX2 as a novel mitochondrial Ub ligase. Upon mitochondrial depolarization, RNF7 proteins are recruited to the mitochondria, where they directly ubiquitinate mitochondrial proteins and stabilize PINK1 expression, thereby promoting the clearance of damaged mitochondria and regulating mitochondrial turnover in the heart. The actions of RNF7 in mitochondria do not require PRKN. Ablation of Rnf7 in mouse hearts results in severe mitochondrial dysfunction and heart failure. Our findings demonstrate that RNF7 is indispensable for mitochondrial turnover and cardiac homeostasis. These results open new avenues for exploring new PRKN-independent pathways that regulate mitophagy, which could have significant implications for developing therapeutic interventions for cardiac diseases.