A Real-Time Approach for Assessing Rodent Engagement in a Nose-Poking Go/No-Go Behavioral Task Using ArUco Markers.

IF 1 Q3 BIOLOGY
Thomas J Smith, Trevor R Smith, Fareeha Faruk, Mihai Bendea, Shreya Tirumala Kumara, Jeffrey R Capadona, Ana G Hernandez-Reynoso, Joseph J Pancrazio
{"title":"A Real-Time Approach for Assessing Rodent Engagement in a Nose-Poking Go/No-Go Behavioral Task Using ArUco Markers.","authors":"Thomas J Smith, Trevor R Smith, Fareeha Faruk, Mihai Bendea, Shreya Tirumala Kumara, Jeffrey R Capadona, Ana G Hernandez-Reynoso, Joseph J Pancrazio","doi":"10.21769/BioProtoc.5098","DOIUrl":null,"url":null,"abstract":"<p><p>Behavioral neuroscience requires precise and unbiased methods for animal behavior assessment to elucidate complex brain-behavior interactions. Traditional manual scoring methods are often labor-intensive and can be prone to error, necessitating advances in automated techniques. Recent innovations in computer vision have led to both marker- and markerless-based tracking systems. In this protocol, we outline the procedures required for utilizing Augmented Reality University of Cordoba (ArUco) markers, a marker-based tracking approach, to automate the assessment and scoring of rodent engagement during an established intracortical microstimulation-based nose-poking go/no-go task. In short, this protocol involves detailed instructions for building a suitable behavioral chamber, installing and configuring all required software packages, constructing and attaching an ArUco marker pattern to a rat, running the behavioral software to track marker positions, and analyzing the engagement data for determining optimal task durations. These methods provide a robust framework for real-time behavioral analysis without the need for extensive training data or high-end computational resources. The main advantages of this protocol include its computational efficiency, ease of implementation, and adaptability to various experimental setups, making it an accessible tool for laboratories with diverse resources. Overall, this approach streamlines the process of behavioral scoring, enhancing both the scalability and reproducibility of behavioral neuroscience research. All resources, including software, 3D models, and example data, are freely available at https://github.com/tomcatsmith19/ArucoDetection. Key features • The ArUco marker mounting hardware is lightweight, compact, and detachable for minimizing interference with natural animal behavior. • Requires minimal computational resources and commercially available equipment, ensuring ease of use for diverse laboratory settings. • Instructions for extracting necessary code are included to enhance accessibility within custom environments. • Developed for real-time assessment and scoring of rodent engagement across a diverse array of pre-loaded behavioral tasks; instructions for adding custom tasks are included. • Engagement analysis allows for the quantification of optimal task durations for consistent behavioral data collection without confirmation biases.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioral neuroscience requires precise and unbiased methods for animal behavior assessment to elucidate complex brain-behavior interactions. Traditional manual scoring methods are often labor-intensive and can be prone to error, necessitating advances in automated techniques. Recent innovations in computer vision have led to both marker- and markerless-based tracking systems. In this protocol, we outline the procedures required for utilizing Augmented Reality University of Cordoba (ArUco) markers, a marker-based tracking approach, to automate the assessment and scoring of rodent engagement during an established intracortical microstimulation-based nose-poking go/no-go task. In short, this protocol involves detailed instructions for building a suitable behavioral chamber, installing and configuring all required software packages, constructing and attaching an ArUco marker pattern to a rat, running the behavioral software to track marker positions, and analyzing the engagement data for determining optimal task durations. These methods provide a robust framework for real-time behavioral analysis without the need for extensive training data or high-end computational resources. The main advantages of this protocol include its computational efficiency, ease of implementation, and adaptability to various experimental setups, making it an accessible tool for laboratories with diverse resources. Overall, this approach streamlines the process of behavioral scoring, enhancing both the scalability and reproducibility of behavioral neuroscience research. All resources, including software, 3D models, and example data, are freely available at https://github.com/tomcatsmith19/ArucoDetection. Key features • The ArUco marker mounting hardware is lightweight, compact, and detachable for minimizing interference with natural animal behavior. • Requires minimal computational resources and commercially available equipment, ensuring ease of use for diverse laboratory settings. • Instructions for extracting necessary code are included to enhance accessibility within custom environments. • Developed for real-time assessment and scoring of rodent engagement across a diverse array of pre-loaded behavioral tasks; instructions for adding custom tasks are included. • Engagement analysis allows for the quantification of optimal task durations for consistent behavioral data collection without confirmation biases.

使用 ArUco 标记实时评估啮齿动物参与戳鼻子的 "去/不去 "行为任务的情况。
行为神经科学需要精确无误的动物行为评估方法,以阐明复杂的大脑与行为之间的相互作用。传统的人工评分方法往往耗费大量人力,而且容易出错,因此有必要改进自动化技术。计算机视觉领域的最新技术革新催生了基于标记和无标记的追踪系统。在本方案中,我们概述了利用科尔多瓦增强现实大学(ArUco)标记(一种基于标记的追踪方法)所需的程序,以自动评估和评分啮齿动物在基于皮层内微刺激的戳鼻走/不走任务中的参与情况。简而言之,该方案包括详细说明如何构建合适的行为室、安装和配置所有必需的软件包、构建 ArUco 标记图案并将其安装到大鼠身上、运行行为软件以跟踪标记位置,以及分析参与数据以确定最佳任务持续时间。这些方法为实时行为分析提供了一个强大的框架,无需大量训练数据或高端计算资源。该方案的主要优点包括计算效率高、易于实施、可适应各种实验设置,使其成为拥有不同资源的实验室可以使用的工具。总体而言,这种方法简化了行为评分过程,提高了行为神经科学研究的可扩展性和可重复性。所有资源,包括软件、三维模型和示例数据,均可在 https://github.com/tomcatsmith19/ArucoDetection 免费获取。主要特点 - ArUco 标记安装硬件重量轻、结构紧凑、可拆卸,可最大限度地减少对动物自然行为的干扰。- 只需最少的计算资源和市场上可买到的设备,确保在不同的实验室环境中都能轻松使用。- 还包括提取必要代码的说明,以提高在定制环境中的可用性。- 专为实时评估啮齿动物在各种预加载行为任务中的参与度并为其打分而开发;包含添加自定义任务的说明。- 参与度分析可量化最佳任务持续时间,从而在不出现确认偏差的情况下收集一致的行为数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信