MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nessim Raouraoua, Claudio Mirabello, Thibaut Véry, Christophe Blanchet, Björn Wallner, Marc F Lensink, Guillaume Brysbaert
{"title":"MassiveFold: unveiling AlphaFold's hidden potential with optimized and parallelized massive sampling.","authors":"Nessim Raouraoua, Claudio Mirabello, Thibaut Véry, Christophe Blanchet, Björn Wallner, Marc F Lensink, Guillaume Brysbaert","doi":"10.1038/s43588-024-00714-4","DOIUrl":null,"url":null,"abstract":"<p><p>Massive sampling in AlphaFold enables access to increased structural diversity. In combination with its efficient confidence ranking, this unlocks elevated modeling capabilities for monomeric structures and foremost for protein assemblies. However, the approach struggles with GPU cost and data storage. Here we introduce MassiveFold, an optimized and customizable version of AlphaFold that runs predictions in parallel, reducing the computing time from several months to hours. MassiveFold is scalable and able to run on anything from a single computer to a large GPU infrastructure, where it can fully benefit from all the computing nodes.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00714-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Massive sampling in AlphaFold enables access to increased structural diversity. In combination with its efficient confidence ranking, this unlocks elevated modeling capabilities for monomeric structures and foremost for protein assemblies. However, the approach struggles with GPU cost and data storage. Here we introduce MassiveFold, an optimized and customizable version of AlphaFold that runs predictions in parallel, reducing the computing time from several months to hours. MassiveFold is scalable and able to run on anything from a single computer to a large GPU infrastructure, where it can fully benefit from all the computing nodes.

MassiveFold:通过优化和并行化的大规模采样挖掘 AlphaFold 隐藏的潜力。
AlphaFold 中的大规模采样可以提高结构的多样性。结合其高效的置信度排序,这就为单体结构和最重要的蛋白质组装释放了更高的建模能力。然而,这种方法在 GPU 成本和数据存储方面存在困难。在这里,我们介绍了MassiveFold,它是AlphaFold的优化和定制版本,可以并行运行预测,将计算时间从几个月缩短到几个小时。MassiveFold具有可扩展性,可以运行在从单台计算机到大型GPU基础架构的任何地方,从而充分受益于所有计算节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信