Enhancing protein stability prediction with geometric learning and pre-training strategies

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Minghui Li
{"title":"Enhancing protein stability prediction with geometric learning and pre-training strategies","authors":"Minghui Li","doi":"10.1038/s43588-024-00724-2","DOIUrl":null,"url":null,"abstract":"A recent study introduces a series of approaches that predict protein fitness and stability after the introduction of mutations. The work focuses on combining different data and pre-training to overcome data scarcity.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"807-808"},"PeriodicalIF":12.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00724-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A recent study introduces a series of approaches that predict protein fitness and stability after the introduction of mutations. The work focuses on combining different data and pre-training to overcome data scarcity.

Abstract Image

利用几何学习和预训练策略增强蛋白质稳定性预测。
最近的一项研究介绍了一系列预测蛋白质突变后适应性和稳定性的方法。这项工作的重点是结合不同的数据和预训练,以克服数据稀缺的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信