MicroNet-MIMRF: a microbial network inference approach based on mutual information and Markov random fields.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae167
Chenqionglu Feng, Huiqun Jia, Hui Wang, Jiaojiao Wang, Mengxuan Lin, Xiaoyan Hu, Chenjing Yu, Hongbin Song, Ligui Wang
{"title":"MicroNet-MIMRF: a microbial network inference approach based on mutual information and Markov random fields.","authors":"Chenqionglu Feng, Huiqun Jia, Hui Wang, Jiaojiao Wang, Mengxuan Lin, Xiaoyan Hu, Chenjing Yu, Hongbin Song, Ligui Wang","doi":"10.1093/bioadv/vbae167","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The human microbiome, comprises complex associations and communication networks among microbial communities, which are crucial for maintaining health. The construction of microbial networks is vital for elucidating these associations. However, existing microbial networks inference methods cannot solve the issues of zero-inflation and non-linear associations. Therefore, necessitating novel methods to improve the accuracy of microbial networks inference.</p><p><strong>Results: </strong>In this study, we introduce the Microbial Network based on Mutual Information and Markov Random Fields (MicroNet-MIMRF) as a novel approach for inferring microbial networks. Abundance data of microbes are modeled through the zero-inflated Poisson distribution, and the discrete matrix is estimated for further calculation. Markov random fields based on mutual information are used to construct accurate microbial networks. MicroNet-MIMRF excels at estimating pairwise associations between microbes, effectively addressing zero-inflation and non-linear associations in microbial abundance data. It outperforms commonly used techniques in simulation experiments, achieving area under the curve values exceeding 0.75 for all parameters. A case study on inflammatory bowel disease data further demonstrates the method's ability to identify insightful associations. Conclusively, MicroNet-MIMRF is a powerful tool for microbial network inference that handles the biases caused by zero-inflation and overestimation of associations.</p><p><strong>Availability and implementation: </strong>The MicroNet-MIMRF is provided at https://github.com/Fionabiostats/MicroNet-MIMRF.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae167"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The human microbiome, comprises complex associations and communication networks among microbial communities, which are crucial for maintaining health. The construction of microbial networks is vital for elucidating these associations. However, existing microbial networks inference methods cannot solve the issues of zero-inflation and non-linear associations. Therefore, necessitating novel methods to improve the accuracy of microbial networks inference.

Results: In this study, we introduce the Microbial Network based on Mutual Information and Markov Random Fields (MicroNet-MIMRF) as a novel approach for inferring microbial networks. Abundance data of microbes are modeled through the zero-inflated Poisson distribution, and the discrete matrix is estimated for further calculation. Markov random fields based on mutual information are used to construct accurate microbial networks. MicroNet-MIMRF excels at estimating pairwise associations between microbes, effectively addressing zero-inflation and non-linear associations in microbial abundance data. It outperforms commonly used techniques in simulation experiments, achieving area under the curve values exceeding 0.75 for all parameters. A case study on inflammatory bowel disease data further demonstrates the method's ability to identify insightful associations. Conclusively, MicroNet-MIMRF is a powerful tool for microbial network inference that handles the biases caused by zero-inflation and overestimation of associations.

Availability and implementation: The MicroNet-MIMRF is provided at https://github.com/Fionabiostats/MicroNet-MIMRF.

MicroNet-MIMRF:基于互信息和马尔可夫随机场的微生物网络推断方法。
动机人类微生物组包括微生物群落之间复杂的关联和交流网络,这对维持健康至关重要。构建微生物网络对阐明这些关联至关重要。然而,现有的微生物网络推断方法无法解决零膨胀和非线性关联问题。因此,有必要采用新方法来提高微生物网络推断的准确性:在这项研究中,我们引入了基于互信息和马尔可夫随机场的微生物网络(MicroNet-MIMRF),作为推断微生物网络的一种新方法。微生物的丰度数据通过零膨胀泊松分布建模,并估计离散矩阵以进一步计算。基于互信息的马尔可夫随机场用于构建精确的微生物网络。MicroNet-MIMRF 擅长估计微生物之间的成对关联,能有效解决微生物丰度数据中的零膨胀和非线性关联问题。它在模拟实验中的表现优于常用技术,所有参数的曲线下面积值都超过了 0.75。一项关于炎症性肠病数据的案例研究进一步证明了该方法有能力识别有洞察力的关联。总之,MicroNet-MIMRF 是微生物网络推断的强大工具,可以处理零膨胀和高估关联所造成的偏差:MicroNet-MIMRF 在 https://github.com/Fionabiostats/MicroNet-MIMRF 上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信