Unveiling the distinctive variations in multi-omics triggered by TP53 mutation in lung cancer subtypes: An insight from interaction among intratumoral microbiota, tumor microenvironment, and pathology
Shanhe Tong , Kenan Huang , Weipeng Xing , Yuwen Chu , Chuanqi Nie , Lei Ji , Wenyan Wang , Geng Tian , Bing Wang , Jialiang Yang
{"title":"Unveiling the distinctive variations in multi-omics triggered by TP53 mutation in lung cancer subtypes: An insight from interaction among intratumoral microbiota, tumor microenvironment, and pathology","authors":"Shanhe Tong , Kenan Huang , Weipeng Xing , Yuwen Chu , Chuanqi Nie , Lei Ji , Wenyan Wang , Geng Tian , Bing Wang , Jialiang Yang","doi":"10.1016/j.compbiolchem.2024.108274","DOIUrl":null,"url":null,"abstract":"<div><div>The TP53 mutation is one of the most common gene mutations in non-small cell lung cancer (NSCLC) and plays a significant role in the occurrence, development, and prognosis of both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Recent studies have also suggested the predictive value of TP53 mutations in the response to immunotherapy for NSCLC. It is known that intratumoral microbiota, tumor immune microenvironment (TIME) and histology are associated with the roles of TP53 mutation in NSCLC. However, the intrinsic associations among these three factors and their underlying interaction with TP53 mutation are not well understood. Additionally, the potential of predicting TP53 mutations using deep learning methods has not yet been fully evaluated. In this paper, we comprehensively evaluated the tissue microbiome, host gene expression characteristics, and histopathological slides of 992 NSCLC patients obtained from the cancer genome atlas (TCGA) and validated the findings using multi-omics data of 332 NSCLC patients from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Compared to LUSC, LUAD exhibited more substantial differences between patients with and without TP53 mutation in all three aspects. In LUAD, our results imply underlying links between the tissue microbiome and immune cell components in the TIME, and show that the abundance of immune cells is reflected in histology slides. Furthermore, we propose a novel multimodal deep learning model that focuses on histopathology images, which achieves an area under the curve (AUC) of 0.84 in LUAD. In summary, TP53 mutation of LUAD resulted more significant changes in intratumoral microbiota, TIME and histology than that of LUSC. And histopathology images can be used to predict TP53 mutation in LUAD with reasonable accuracy.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108274"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002627","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The TP53 mutation is one of the most common gene mutations in non-small cell lung cancer (NSCLC) and plays a significant role in the occurrence, development, and prognosis of both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Recent studies have also suggested the predictive value of TP53 mutations in the response to immunotherapy for NSCLC. It is known that intratumoral microbiota, tumor immune microenvironment (TIME) and histology are associated with the roles of TP53 mutation in NSCLC. However, the intrinsic associations among these three factors and their underlying interaction with TP53 mutation are not well understood. Additionally, the potential of predicting TP53 mutations using deep learning methods has not yet been fully evaluated. In this paper, we comprehensively evaluated the tissue microbiome, host gene expression characteristics, and histopathological slides of 992 NSCLC patients obtained from the cancer genome atlas (TCGA) and validated the findings using multi-omics data of 332 NSCLC patients from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Compared to LUSC, LUAD exhibited more substantial differences between patients with and without TP53 mutation in all three aspects. In LUAD, our results imply underlying links between the tissue microbiome and immune cell components in the TIME, and show that the abundance of immune cells is reflected in histology slides. Furthermore, we propose a novel multimodal deep learning model that focuses on histopathology images, which achieves an area under the curve (AUC) of 0.84 in LUAD. In summary, TP53 mutation of LUAD resulted more significant changes in intratumoral microbiota, TIME and histology than that of LUSC. And histopathology images can be used to predict TP53 mutation in LUAD with reasonable accuracy.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.