DeePathNet: A Transformer-Based Deep Learning Model Integrating Multiomic Data with Cancer Pathways.

IF 2 Q3 ONCOLOGY
Zhaoxiang Cai, Rebecca C Poulos, Adel Aref, Phillip J Robinson, Roger R Reddel, Qing Zhong
{"title":"DeePathNet: A Transformer-Based Deep Learning Model Integrating Multiomic Data with Cancer Pathways.","authors":"Zhaoxiang Cai, Rebecca C Poulos, Adel Aref, Phillip J Robinson, Roger R Reddel, Qing Zhong","doi":"10.1158/2767-9764.CRC-24-0285","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>DeePathNet integrates cancer-specific biological pathways using transformer-based deep learning for enhanced cancer analysis. It outperforms existing models in predicting drug responses, cancer types, and subtypes. By enabling pathway-level biomarker discovery, DeePathNet represents a significant advancement in cancer research and could lead to more effective treatments.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":"3151-3164"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652962/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: DeePathNet integrates cancer-specific biological pathways using transformer-based deep learning for enhanced cancer analysis. It outperforms existing models in predicting drug responses, cancer types, and subtypes. By enabling pathway-level biomarker discovery, DeePathNet represents a significant advancement in cancer research and could lead to more effective treatments.

DeePathNet:基于转换器的深度学习模型,将多组学数据与癌症路径整合在一起。
结合机器学习的多组学数据分析有望显著改善癌症诊断和预后。传统的机器学习方法通常局限于 omic 测量,忽略了现有的领域知识,如连接各种 omic 数据类型中分子实体的生物网络。在这里,我们开发了一种基于 Transformer 的可解释深度学习模型 DeePathNet,它将癌症特异性通路信息整合到多组学数据分析中。通过使用各种大数据集,包括 ProCan-DepMapSanger、CCLE 和 TCGA,我们证明并验证了 DeePathNet 在预测药物反应以及癌症类型和亚型分类方面优于传统方法。结合生物医学知识和最先进的深度学习方法,DeePathNet 能够在通路水平上发现生物标记物,最大限度地发挥数据驱动癌症研究方法的威力。DeePathNet 可在 GitHub 上查阅:https://github.com/CMRI-ProCan/DeePathNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信