Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector
{"title":"Bioinformatic meta-analysis of transcriptomics of developing Drosophila muscles identifies temporal regulatory transcription factors including a Notch effector","authors":"Amartya Mukherjee , Fathima Ashraf , Upendra Nongthomba","doi":"10.1016/j.bbagrm.2024.195066","DOIUrl":null,"url":null,"abstract":"<div><div>The intricate mechanism of gene regulation coordinates the precise control of when, where, and to what extent genes are activated or repressed, directing the complex processes that govern cellular functions and development. Dysregulation of gene expression can lead to diseases such as autoimmune disorders, cancer, and neurodegeneration. Transcriptional regulation, especially involving transcription factors (TFs), plays a major role in controlling gene expression. This study focuses on identifying gene regulatory mechanisms that generate distinct gene expression patterns during <em>Drosophila</em> muscle development. Utilising a bioinformatics approach, we analysed the developmental time-point-specific transcriptomics resource generated by Spletter <em>et al</em>., which includes mRNA sequencing data at eight stages of indirect flight muscle (IFM) development. They had identified 40 distinct genome-wide clusters representing various temporal expression dynamics using 'soft' clustering. Promoter sequences of genes in these clusters were analysed to predict novel motifs that act as TF binding sites. Comparative analysis with known motifs revealed significant overlaps, indicating shared transcriptional regulation. The physiological relevance of predicted TFs was confirmed by cross-referencing with experimental ChIP-seq data. We focused on Cluster 36, characterised by a unique bimodal temporal expression profile, and identified candidate genes, <em>Rbfox1</em> and <em>zfh1</em>, for further study. Ectopic overexpression experiments revealed that the TF Enhancer of split m8 helix-loop-helix [E(spl)m8-HLH], part of the Notch signalling pathway, acts as a transcriptional repressor for <em>Rbfox1</em> and <em>zfh1</em>. Our findings highlight the complexity of transcriptional regulation during myogenesis, and identify key TFs that could be targeted for further research in muscle development and related disorders.</div></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1868 1","pages":"Article 195066"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939924000622","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The intricate mechanism of gene regulation coordinates the precise control of when, where, and to what extent genes are activated or repressed, directing the complex processes that govern cellular functions and development. Dysregulation of gene expression can lead to diseases such as autoimmune disorders, cancer, and neurodegeneration. Transcriptional regulation, especially involving transcription factors (TFs), plays a major role in controlling gene expression. This study focuses on identifying gene regulatory mechanisms that generate distinct gene expression patterns during Drosophila muscle development. Utilising a bioinformatics approach, we analysed the developmental time-point-specific transcriptomics resource generated by Spletter et al., which includes mRNA sequencing data at eight stages of indirect flight muscle (IFM) development. They had identified 40 distinct genome-wide clusters representing various temporal expression dynamics using 'soft' clustering. Promoter sequences of genes in these clusters were analysed to predict novel motifs that act as TF binding sites. Comparative analysis with known motifs revealed significant overlaps, indicating shared transcriptional regulation. The physiological relevance of predicted TFs was confirmed by cross-referencing with experimental ChIP-seq data. We focused on Cluster 36, characterised by a unique bimodal temporal expression profile, and identified candidate genes, Rbfox1 and zfh1, for further study. Ectopic overexpression experiments revealed that the TF Enhancer of split m8 helix-loop-helix [E(spl)m8-HLH], part of the Notch signalling pathway, acts as a transcriptional repressor for Rbfox1 and zfh1. Our findings highlight the complexity of transcriptional regulation during myogenesis, and identify key TFs that could be targeted for further research in muscle development and related disorders.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.