Hamna Mariyam K.B. , Sayooj Aby Jose , Anuwat Jirawattanapanit , Karuna Mathew
{"title":"A comprehensive study on tuberculosis prediction models: Integrating machine learning into epidemiological analysis","authors":"Hamna Mariyam K.B. , Sayooj Aby Jose , Anuwat Jirawattanapanit , Karuna Mathew","doi":"10.1016/j.jtbi.2024.111988","DOIUrl":null,"url":null,"abstract":"<div><div>Tuberculosis (TB), the second leading infectious killer globally, claimed the lives of 1.3 million individuals in 2022, after COVID-19, surpassing the toll of HIV and AIDS. With an estimated 10.6 million new TB cases worldwide in 2022, the gravity of the disease persists, necessitating urgent attention. Tuberculosis remains a critical public health crisis, and efforts to combat this infectious disease demand intensified global commitment and resources. This study utilizes predictive modeling techniques to forecast the incidence of Tuberculosis (TB), employing a range of machine learning models. Additionally, the research incorporates impactful visualizations for comprehensive data exploration, analysis and comparison. Various machine learning models are developed to anticipate TB incidence, with the optimal performing model to customize a user-defined function. This research provides valuable insights into the potential determinants influencing TB incidence, contributing to the identification of strategies for preventing the spread of Tuberculosis.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"597 ","pages":"Article 111988"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002251932400273X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB), the second leading infectious killer globally, claimed the lives of 1.3 million individuals in 2022, after COVID-19, surpassing the toll of HIV and AIDS. With an estimated 10.6 million new TB cases worldwide in 2022, the gravity of the disease persists, necessitating urgent attention. Tuberculosis remains a critical public health crisis, and efforts to combat this infectious disease demand intensified global commitment and resources. This study utilizes predictive modeling techniques to forecast the incidence of Tuberculosis (TB), employing a range of machine learning models. Additionally, the research incorporates impactful visualizations for comprehensive data exploration, analysis and comparison. Various machine learning models are developed to anticipate TB incidence, with the optimal performing model to customize a user-defined function. This research provides valuable insights into the potential determinants influencing TB incidence, contributing to the identification of strategies for preventing the spread of Tuberculosis.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.