Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro.
Juxuan Ruan, Lei Wang, Ning Wang, Ping Huang, Dennis Chang, Xian Zhou, Saiwang Seto, Dan Li, Jincai Hou
{"title":"Hydroxysafflor Yellow A promotes angiogenesis of brain microvascular endothelial cells from ischemia/reperfusion injury via glycolysis pathway in vitro.","authors":"Juxuan Ruan, Lei Wang, Ning Wang, Ping Huang, Dennis Chang, Xian Zhou, Saiwang Seto, Dan Li, Jincai Hou","doi":"10.1016/j.jstrokecerebrovasdis.2024.108107","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis.</p><p><strong>Methods: </strong>HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA).</p><p><strong>Results: </strong>HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA.</p><p><strong>Conclusion: </strong>HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.</p>","PeriodicalId":54368,"journal":{"name":"Journal of Stroke & Cerebrovascular Diseases","volume":" ","pages":"108107"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stroke & Cerebrovascular Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.108107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Angiogenesis of brain microvascular endothelial cells (BMECs) after cerebral ischemia was conducive to improving the blood supply of ischemia tissues, which was upregulated by glycolysis. Hydroxysafflor Yellow A (HSYA) mends damaged tissues through increasing angiogenesis.
Methods: HSYA treated proliferation, migration and angiogenesis of BMECs in vitro in vitro during OGD/R. HSYA regulated the key enzymes of glycolysis, such as hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), glucose uptake and products (pyruvate, ATP and lactate) were detected by western blot and kits, respectively. Scratch wound assay, transwell, tube formation and spheroid sprouting were used to explore the pathway that HSYA recovered migration and angiogenesis of BMECs. We evaluated the potential target of HSYA promoting glycolysis via molecular docking, drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA).
Results: HSYA promoted the proliferation, migration, tube formation and spheroid sprouting of BMECs during OGD/R, and stimulated the expression of tip phenotype marker protein (CD34), and the receptor (Notch-1) that regulated the differentiation of endothelial cells into tip/stalk phenotype. In glycolysis, PFKFB3 expression was upregulated by HSYA; HSYA also improved ATP and pyruvate levels, as well as lactate release after OGD/R. Finally, upregulating VEGFA and p-VEGFR2 of HSYA was weakened because of suppressing glycolysis; the HSYA's improvement of BMECs migration and angiogenesis was attenuated under the inhibition of glycolysis, which confirmed that HSYA were upregulating angiogenesis and expression of VEGFA/VEGFR2 by glycolysis pathway. The result about molecular docking, DARTS and CETSA suggested that PFKFB3 was the possible target of HSYA.
Conclusion: HSYA promotes angiogenesis of BMECs in vitro through the glycolysis mediated VEGFA/VEGFR2 pathway, and PFKFB3 is the potential target of HSYA to heighten glycolysis.
期刊介绍:
The Journal of Stroke & Cerebrovascular Diseases publishes original papers on basic and clinical science related to the fields of stroke and cerebrovascular diseases. The Journal also features review articles, controversies, methods and technical notes, selected case reports and other original articles of special nature. Its editorial mission is to focus on prevention and repair of cerebrovascular disease. Clinical papers emphasize medical and surgical aspects of stroke, clinical trials and design, epidemiology, stroke care delivery systems and outcomes, imaging sciences and rehabilitation of stroke. The Journal will be of special interest to specialists involved in caring for patients with cerebrovascular disease, including neurologists, neurosurgeons and cardiologists.