Reducing bias in healthcare artificial intelligence: A white paper.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Carolyn Sun, Shannon L Harris
{"title":"Reducing bias in healthcare artificial intelligence: A white paper.","authors":"Carolyn Sun, Shannon L Harris","doi":"10.1177/14604582241291410","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Mitigation of racism in artificial intelligence (AI) is needed to improve health outcomes, yet no consensus exists on how this might be achieved. <b>Methods:</b> At an international conference in 2022, experts gathered to discuss strategies for reducing bias in healthcare AI. <b>Results:</b> This paper delineates these strategies along with their corresponding strengths and weaknesses and reviews the existing literature on these strategies. <b>Conclusions:</b> Five major themes resulted: reducing dataset bias, accurate modeling of existing data, transparency of artificial intelligence, regulation of artificial intelligence and the people who develop it, and bringing stakeholders to the table.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241291410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Mitigation of racism in artificial intelligence (AI) is needed to improve health outcomes, yet no consensus exists on how this might be achieved. Methods: At an international conference in 2022, experts gathered to discuss strategies for reducing bias in healthcare AI. Results: This paper delineates these strategies along with their corresponding strengths and weaknesses and reviews the existing literature on these strategies. Conclusions: Five major themes resulted: reducing dataset bias, accurate modeling of existing data, transparency of artificial intelligence, regulation of artificial intelligence and the people who develop it, and bringing stakeholders to the table.

减少医疗人工智能中的偏见:白皮书。
目的:要想改善健康状况,就必须减少人工智能(AI)中的种族主义,但对于如何做到这一点,目前还没有达成共识。方法:在 2022 年的一次国际会议上,专家们齐聚一堂,讨论减少医疗人工智能中偏见的策略。结果:本文阐述了这些策略及其相应的优缺点,并回顾了有关这些策略的现有文献。结论会议提出了五大主题:减少数据集偏差、现有数据的精确建模、人工智能的透明度、人工智能及其开发人员的监管,以及让利益相关者参与讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信