{"title":"Effects of iron overload in human joint tissue explant cultures and animal models.","authors":"Indira Prasadam, Karsten Schrobback, Bastian Kranz-Rudolph, Nadine Fischer, Yogita Sonar, Antonia RuJia Sun, Eriza Secondes, Travis Klein, Ross Crawford, V Nathan Subramaniam, Gautam Rishi","doi":"10.1007/s00109-024-02495-9","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a prevalent degenerative joint disease affecting over 530 million individuals worldwide. Recent studies suggest a potential link between iron overload, a condition characterised by the excessive accumulation of iron in the body, and the onset of OA. Iron is essential for various biological processes, and any disruption in its homeostasis can trigger significant health effects, including OA. This study aimed to elucidate the effects of excess iron on joint tissue and the underlying mechanisms associated with excess iron and OA development. Human articular cartilage (n = 6) and synovium (n = 4) were collected from patients who underwent total knee arthroplasty. Cartilage and synovium explants were incubated with a gradually increasing concentration of ferric ammonium citrate for 3 days respectively. The effects of iron homeostasis in tissue explants were analysed using a Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). To further study the effects of iron excess on OA initiation and development, male 3-week-old Hfe<sup>-/-</sup> and 5-week-old Tfr2<sup>-/-</sup> mice, animal models of hereditary haemochromatosis were established. Littermate wild-type mice were fed a high-iron diet to induce dietary overload. All animals were sacrificed at 8 weeks of age, and knee joints were harvested for histological analysis. The LA-ICP-MS analysis unveiled changes in the elemental composition related to iron metabolism, which included alterations in FTH1, FPN1, and HAMP within iron(III)-treated cartilage explants. While chondrocyte viability remained stable under different iron concentrations, ex vivo treatment with a high concentration of Fe<sup>3+</sup> increased the catabolic gene expression of MMP13. Similar alterations were observed in the synovium, with added increases in GAG content and inflammation markers. In vivo studies further supported the role of iron overload in OA development as evidenced by spontaneous OA symptoms, proteoglycan loss, increased Mankin scores, synovial thickening, and enhanced immunohistochemical expression of MMP13, ADAMTS5, and P21 in Hfe<sup>-/-</sup>, Tfr2<sup>-/-</sup>, and diet-induced iron overload mouse models. Our findings elucidate the specific pathways through which excess iron accelerates OA progression and highlights potential targets for therapeutic intervention aimed at modulating iron levels to mitigate OA symptoms. KEY MESSAGES: Iron overload alters joint iron metabolism, increasing OA markers in cartilage and synovium. High iron levels in mice accelerate OA, highlighting genetic and dietary impacts. Excess iron prompts chondrocyte iron storage response, signalling potential OA pathways. Iron dysregulation linked to increased cartilage degradation and synovial inflammation. Our findings support targeted therapies for OA based on iron modulation strategies.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02495-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease affecting over 530 million individuals worldwide. Recent studies suggest a potential link between iron overload, a condition characterised by the excessive accumulation of iron in the body, and the onset of OA. Iron is essential for various biological processes, and any disruption in its homeostasis can trigger significant health effects, including OA. This study aimed to elucidate the effects of excess iron on joint tissue and the underlying mechanisms associated with excess iron and OA development. Human articular cartilage (n = 6) and synovium (n = 4) were collected from patients who underwent total knee arthroplasty. Cartilage and synovium explants were incubated with a gradually increasing concentration of ferric ammonium citrate for 3 days respectively. The effects of iron homeostasis in tissue explants were analysed using a Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). To further study the effects of iron excess on OA initiation and development, male 3-week-old Hfe-/- and 5-week-old Tfr2-/- mice, animal models of hereditary haemochromatosis were established. Littermate wild-type mice were fed a high-iron diet to induce dietary overload. All animals were sacrificed at 8 weeks of age, and knee joints were harvested for histological analysis. The LA-ICP-MS analysis unveiled changes in the elemental composition related to iron metabolism, which included alterations in FTH1, FPN1, and HAMP within iron(III)-treated cartilage explants. While chondrocyte viability remained stable under different iron concentrations, ex vivo treatment with a high concentration of Fe3+ increased the catabolic gene expression of MMP13. Similar alterations were observed in the synovium, with added increases in GAG content and inflammation markers. In vivo studies further supported the role of iron overload in OA development as evidenced by spontaneous OA symptoms, proteoglycan loss, increased Mankin scores, synovial thickening, and enhanced immunohistochemical expression of MMP13, ADAMTS5, and P21 in Hfe-/-, Tfr2-/-, and diet-induced iron overload mouse models. Our findings elucidate the specific pathways through which excess iron accelerates OA progression and highlights potential targets for therapeutic intervention aimed at modulating iron levels to mitigate OA symptoms. KEY MESSAGES: Iron overload alters joint iron metabolism, increasing OA markers in cartilage and synovium. High iron levels in mice accelerate OA, highlighting genetic and dietary impacts. Excess iron prompts chondrocyte iron storage response, signalling potential OA pathways. Iron dysregulation linked to increased cartilage degradation and synovial inflammation. Our findings support targeted therapies for OA based on iron modulation strategies.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.